MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   GIF version

Theorem difn0 4324
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 4023 . . 3 (𝐴 = 𝐵𝐴𝐵)
2 ssdif0 4323 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2sylib 220 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
43necon3i 3048 1 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 3016  cdif 3933  wss 3936  c0 4291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-v 3496  df-dif 3939  df-in 3943  df-ss 3952  df-nul 4292
This theorem is referenced by:  disjdsct  30438  bj-2upln1upl  34339
  Copyright terms: Public domain W3C validator