MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab4g Structured version   Visualization version   GIF version

Theorem elab4g 3323
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
Hypotheses
Ref Expression
elab4g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab4g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab4g (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab4g
StepHypRef Expression
1 elex 3184 . 2 (𝐴𝐵𝐴 ∈ V)
2 elab4g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab4g.2 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 3321 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4biadan2 671 1 (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  {cab 2595  Vcvv 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-v 3174
This theorem is referenced by:  isprs  16699  ispos  16716  istrkgc  25070  istrkgb  25071  istrkgcb  25072  istrkge  25073  istrkgl  25074  eulerpartlemt0  29564  istrkg2d  29803
  Copyright terms: Public domain W3C validator