![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hbxfrbi | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2864 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | albii 1892 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
4 | 1, 2, 3 | 3imtr4i 281 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: hbn1fw 2119 hbe1w 2123 hbe1 2166 hbexOLD 2295 hbab1 2745 hbab 2747 hbxfreq 2864 hbral 3077 bnj982 31152 bnj1095 31155 bnj1096 31156 bnj1276 31188 bnj594 31285 bnj1445 31415 bj-hbab1 33073 hbra2VD 39591 |
Copyright terms: Public domain | W3C validator |