MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab Structured version   Visualization version   GIF version

Theorem hbab 2600
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
hbab.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbab (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbab
StepHypRef Expression
1 df-clab 2596 . 2 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
2 hbab.1 . . 3 (𝜑 → ∀𝑥𝜑)
32hbsb 2428 . 2 ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)
41, 3hbxfrbi 1741 1 (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1472  [wsb 1866  wcel 1976  {cab 2595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596
This theorem is referenced by:  nfsab  2601  bnj1441  29958  bnj1309  30137
  Copyright terms: Public domain W3C validator