![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetri | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference rule). (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
Ref | Expression |
---|---|
issetri | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
2 | isset 3311 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∃wex 1817 ∈ wcel 2103 Vcvv 3304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-12 2160 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1599 df-ex 1818 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-v 3306 |
This theorem is referenced by: zfrep4 4887 0ex 4898 inex1 4907 pwex 4953 zfpair2 5012 uniex 7070 bj-snsetex 33178 |
Copyright terms: Public domain | W3C validator |