Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0rex Structured version   Visualization version   GIF version

Theorem n0rex 3933
 Description: There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020.)
Assertion
Ref Expression
n0rex (𝐴 ≠ ∅ → ∃𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0rex
StepHypRef Expression
1 id 22 . . . 4 (𝑥𝐴𝑥𝐴)
21ancli 574 . . 3 (𝑥𝐴 → (𝑥𝐴𝑥𝐴))
32eximi 1761 . 2 (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
4 n0 3929 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 df-rex 2917 . 2 (∃𝑥𝐴 𝑥𝐴 ↔ ∃𝑥(𝑥𝐴𝑥𝐴))
63, 4, 53imtr4i 281 1 (𝐴 ≠ ∅ → ∃𝑥𝐴 𝑥𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∃wex 1703   ∈ wcel 1989   ≠ wne 2793  ∃wrex 2912  ∅c0 3913 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-rex 2917  df-v 3200  df-dif 3575  df-nul 3914 This theorem is referenced by:  ssn0rex  3934
 Copyright terms: Public domain W3C validator