MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natded Structured version   Visualization version   GIF version

Theorem natded 28109
Description: Here are typical natural deduction (ND) rules in the style of Gentzen and Jaśkowski, along with MPE translations of them. This also shows the recommended theorems when you find yourself needing these rules (the recommendations encourage a slightly different proof style that works more naturally with set.mm). A decent list of the standard rules of natural deduction can be found beginning with definition /\I in [Pfenning] p. 18. For information about ND and Metamath, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer. Many more citations could be added.

NameNatural Deduction RuleTranslation RecommendationComments
IT Γ𝜓 => Γ𝜓 idi 1 nothing Reiteration is always redundant in Metamath. Definition "new rule" in [Pfenning] p. 18, definition IT in [Clemente] p. 10.
I Γ𝜓 & Γ𝜒 => Γ𝜓𝜒 jca 512 jca 512, pm3.2i 471 Definition I in [Pfenning] p. 18, definition Im,n in [Clemente] p. 10, and definition I in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
EL Γ𝜓𝜒 => Γ𝜓 simpld 495 simpld 495, adantr 481 Definition EL in [Pfenning] p. 18, definition E(1) in [Clemente] p. 11, and definition E in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
ER Γ𝜓𝜒 => Γ𝜒 simprd 496 simpr 485, adantl 482 Definition ER in [Pfenning] p. 18, definition E(2) in [Clemente] p. 11, and definition E in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
I Γ, 𝜓𝜒 => Γ𝜓𝜒 ex 413 ex 413 Definition I in [Pfenning] p. 18, definition I=>m,n in [Clemente] p. 11, and definition I in [Indrzejczak] p. 33.
E Γ𝜓𝜒 & Γ𝜓 => Γ𝜒 mpd 15 ax-mp 5, mpd 15, mpdan 683, imp 407 Definition E in [Pfenning] p. 18, definition E=>m,n in [Clemente] p. 11, and definition E in [Indrzejczak] p. 33.
IL Γ𝜓 => Γ𝜓𝜒 olcd 870 olc 862, olci 860, olcd 870 Definition I in [Pfenning] p. 18, definition In(1) in [Clemente] p. 12
IR Γ𝜒 => Γ𝜓𝜒 orcd 869 orc 861, orci 859, orcd 869 Definition IR in [Pfenning] p. 18, definition In(2) in [Clemente] p. 12.
E Γ𝜓𝜒 & Γ, 𝜓𝜃 & Γ, 𝜒𝜃 => Γ𝜃 mpjaodan 952 mpjaodan 952, jaodan 951, jaod 853 Definition E in [Pfenning] p. 18, definition Em,n,p in [Clemente] p. 12.
¬I Γ, 𝜓 => Γ¬ 𝜓 inegd 1548 pm2.01d 191
¬I Γ, 𝜓𝜃 & Γ¬ 𝜃 => Γ¬ 𝜓 mtand 812 mtand 812 definition I¬m,n,p in [Clemente] p. 13.
¬I Γ, 𝜓𝜒 & Γ, 𝜓¬ 𝜒 => Γ¬ 𝜓 pm2.65da 813 pm2.65da 813 Contradiction.
¬I Γ, 𝜓¬ 𝜓 => Γ¬ 𝜓 pm2.01da 795 pm2.01d 191, pm2.65da 813, pm2.65d 197 For an alternative falsum-free natural deduction ruleset
¬E Γ𝜓 & Γ¬ 𝜓 => Γ pm2.21fal 1550 pm2.21dd 196
¬E Γ, ¬ 𝜓 => Γ𝜓 pm2.21dd 196 definition E in [Indrzejczak] p. 33.
¬E Γ𝜓 & Γ¬ 𝜓 => Γ𝜃 pm2.21dd 196 pm2.21dd 196, pm2.21d 121, pm2.21 123 For an alternative falsum-free natural deduction ruleset. Definition ¬E in [Pfenning] p. 18.
I Γ trud 1538 tru 1532, trud 1538, mptru 1535 Definition I in [Pfenning] p. 18.
E Γ, ⊥𝜃 falimd 1546 falim 1545 Definition E in [Pfenning] p. 18.
I Γ[𝑎 / 𝑥]𝜓 => Γ𝑥𝜓 alrimiv 1919 alrimiv 1919, ralrimiva 3179 Definition Ia in [Pfenning] p. 18, definition In in [Clemente] p. 32.
E Γ𝑥𝜓 => Γ[𝑡 / 𝑥]𝜓 spsbcd 3783 spcv 3603, rspcv 3615 Definition E in [Pfenning] p. 18, definition En,t in [Clemente] p. 32.
I Γ[𝑡 / 𝑥]𝜓 => Γ𝑥𝜓 spesbcd 3863 spcev 3604, rspcev 3620 Definition I in [Pfenning] p. 18, definition In,t in [Clemente] p. 32.
E Γ𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓𝜃 => Γ𝜃 exlimddv 1927 exlimddv 1927, exlimdd 2210, exlimdv 1925, rexlimdva 3281 Definition Ea,u in [Pfenning] p. 18, definition Em,n,p,a in [Clemente] p. 32.
C Γ, ¬ 𝜓 => Γ𝜓 efald 1549 efald 1549 Proof by contradiction (classical logic), definition C in [Pfenning] p. 17.
C Γ, ¬ 𝜓𝜓 => Γ𝜓 pm2.18da 796 pm2.18da 796, pm2.18d 127, pm2.18 128 For an alternative falsum-free natural deduction ruleset
¬ ¬C Γ¬ ¬ 𝜓 => Γ𝜓 notnotrd 135 notnotrd 135, notnotr 132 Double negation rule (classical logic), definition NNC in [Pfenning] p. 17, definition E¬n in [Clemente] p. 14.
EM Γ𝜓 ∨ ¬ 𝜓 exmidd 889 exmid 888 Excluded middle (classical logic), definition XM in [Pfenning] p. 17, proof 5.11 in [Clemente] p. 14.
=I Γ𝐴 = 𝐴 eqidd 2819 eqid 2818, eqidd 2819 Introduce equality, definition =I in [Pfenning] p. 127.
=E Γ𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 => Γ[𝐵 / 𝑥]𝜓 sbceq1dd 3775 sbceq1d 3774, equality theorems Eliminate equality, definition =E in [Pfenning] p. 127. (Both E1 and E2.)

Note that MPE uses classical logic, not intuitionist logic. As is conventional, the "I" rules are introduction rules, "E" rules are elimination rules, the "C" rules are conversion rules, and Γ represents the set of (current) hypotheses. We use wff variable names beginning with 𝜓 to provide a closer representation of the Metamath equivalents (which typically use the antedent 𝜑 to represent the context Γ).

Most of this information was developed by Mario Carneiro and posted on 3-Feb-2017. For more information, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer.

For annotated examples where some traditional ND rules are directly applied in MPE, see ex-natded5.2 28110, ex-natded5.3 28113, ex-natded5.5 28116, ex-natded5.7 28117, ex-natded5.8 28119, ex-natded5.13 28121, ex-natded9.20 28123, and ex-natded9.26 28125.

(Contributed by DAW, 4-Feb-2017.) (New usage is discouraged.)

Hypothesis
Ref Expression
natded.1 𝜑
Assertion
Ref Expression
natded 𝜑

Proof of Theorem natded
StepHypRef Expression
1 natded.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator