Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstrd Structured version   Visualization version   GIF version

Theorem psstrd 3692
 Description: Proper subclass inclusion is transitive. Deduction form of psstr 3689. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psstrd.1 (𝜑𝐴𝐵)
psstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psstrd (𝜑𝐴𝐶)

Proof of Theorem psstrd
StepHypRef Expression
1 psstrd.1 . 2 (𝜑𝐴𝐵)
2 psstrd.2 . 2 (𝜑𝐵𝐶)
3 psstr 3689 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 692 1 (𝜑𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊊ wpss 3556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-ne 2791  df-in 3562  df-ss 3569  df-pss 3571 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator