![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
qseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3278 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶)) | |
2 | 1 | abbidv 2879 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶}) |
3 | df-qs 7917 | . 2 ⊢ (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} | |
4 | df-qs 7917 | . 2 ⊢ (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2819 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 {cab 2746 ∃wrex 3051 [cec 7909 / cqs 7910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-qs 7917 |
This theorem is referenced by: pi1bas 23038 pstmval 30247 qseq1i 34378 qseq1d 34379 qseq12 34382 |
Copyright terms: Public domain | W3C validator |