Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmval Structured version   Visualization version   GIF version

Theorem pstmval 31135
Description: Value of the metric induced by a pseudometric 𝐷. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmval (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
Distinct variable groups:   𝑎,𝑏,𝑥,𝑦,𝑧,𝐷   𝑋,𝑎,𝑏,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑥,𝑦,𝑧

Proof of Theorem pstmval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pstm 31129 . . 3 pstoMet = (𝑑 ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
21a1i 11 . 2 (𝐷 ∈ (PsMet‘𝑋) → pstoMet = (𝑑 ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)})))
3 psmetdmdm 22915 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
43adantr 483 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
5 dmeq 5772 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
65dmeqd 5774 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
76adantl 484 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
84, 7eqtr4d 2859 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝑑)
9 qseq1 8343 . . . . . 6 (𝑋 = dom dom 𝑑 → (𝑋 / ) = (dom dom 𝑑 / ))
108, 9syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑋 / ) = (dom dom 𝑑 / ))
11 fveq2 6670 . . . . . . . 8 (𝑑 = 𝐷 → (~Met𝑑) = (~Met𝐷))
12 pstmval.1 . . . . . . . 8 = (~Met𝐷)
1311, 12syl6reqr 2875 . . . . . . 7 (𝑑 = 𝐷 = (~Met𝑑))
14 qseq2 8344 . . . . . . 7 ( = (~Met𝑑) → (dom dom 𝑑 / ) = (dom dom 𝑑 / (~Met𝑑)))
1513, 14syl 17 . . . . . 6 (𝑑 = 𝐷 → (dom dom 𝑑 / ) = (dom dom 𝑑 / (~Met𝑑)))
1615adantl 484 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 / ) = (dom dom 𝑑 / (~Met𝑑)))
1710, 16eqtr2d 2857 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 / (~Met𝑑)) = (𝑋 / ))
18 mpoeq12 7227 . . . 4 (((dom dom 𝑑 / (~Met𝑑)) = (𝑋 / ) ∧ (dom dom 𝑑 / (~Met𝑑)) = (𝑋 / )) → (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
1917, 17, 18syl2anc 586 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
20 simp1r 1194 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → 𝑑 = 𝐷)
2120oveqd 7173 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
2221eqeq2d 2832 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → (𝑧 = (𝑥𝑑𝑦) ↔ 𝑧 = (𝑥𝐷𝑦)))
23222rexbidv 3300 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → (∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦) ↔ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)))
2423abbidv 2885 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)} = {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)})
2524unieqd 4852 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)} = {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)})
2625mpoeq3dva 7231 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
2719, 26eqtrd 2856 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
28 elfvdm 6702 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
29 fveq2 6670 . . . . . 6 (𝑥 = 𝑋 → (PsMet‘𝑥) = (PsMet‘𝑋))
3029eleq2d 2898 . . . . 5 (𝑥 = 𝑋 → (𝐷 ∈ (PsMet‘𝑥) ↔ 𝐷 ∈ (PsMet‘𝑋)))
3130rspcev 3623 . . . 4 ((𝑋 ∈ dom PsMet ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
3228, 31mpancom 686 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
33 df-psmet 20537 . . . . 5 PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑎𝑥 ((𝑎𝑑𝑎) = 0 ∧ ∀𝑏𝑥𝑐𝑥 (𝑎𝑑𝑏) ≤ ((𝑐𝑑𝑎) +𝑒 (𝑐𝑑𝑏)))})
3433funmpt2 6394 . . . 4 Fun PsMet
35 elunirn 7010 . . . 4 (Fun PsMet → (𝐷 ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥)))
3634, 35ax-mp 5 . . 3 (𝐷 ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
3732, 36sylibr 236 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
38 elfvex 6703 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
39 qsexg 8355 . . . 4 (𝑋 ∈ V → (𝑋 / ) ∈ V)
4038, 39syl 17 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 / ) ∈ V)
41 mpoexga 7775 . . 3 (((𝑋 / ) ∈ V ∧ (𝑋 / ) ∈ V) → (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}) ∈ V)
4240, 40, 41syl2anc 586 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}) ∈ V)
432, 27, 37, 42fvmptd 6775 1 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  {crab 3142  Vcvv 3494   cuni 4838   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  Fun wfun 6349  cfv 6355  (class class class)co 7156  cmpo 7158   / cqs 8288  m cmap 8406  0cc0 10537  *cxr 10674  cle 10676   +𝑒 cxad 12506  PsMetcpsmet 20529  ~Metcmetid 31126  pstoMetcpstm 31127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-ec 8291  df-qs 8295  df-map 8408  df-xr 10679  df-psmet 20537  df-pstm 31129
This theorem is referenced by:  pstmfval  31136  pstmxmet  31137
  Copyright terms: Public domain W3C validator