![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2exf | Structured version Visualization version GIF version |
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 3197. (Revised by Wolf Lammen, 10-Jan-2020.) |
Ref | Expression |
---|---|
r2exf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
r2exf | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2exf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | r2alf 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) |
3 | 2 | r2exlem 3197 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 Ⅎwnfc 2889 ∃wrex 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 |
This theorem is referenced by: rexcomf 3235 |
Copyright terms: Public domain | W3C validator |