![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralralimp | Structured version Visualization version GIF version |
Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.) |
Ref | Expression |
---|---|
ralralimp | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ornld 958 | . . . 4 ⊢ (𝜑 → (((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) |
3 | 2 | ralimdv 2992 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → ∀𝑥 ∈ 𝐴 𝜏)) |
4 | rspn0 3967 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜏 → 𝜏)) | |
5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 𝜏 → 𝜏)) |
6 | 3, 5 | syld 47 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 ≠ wne 2823 ∀wral 2941 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |