 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvv Structured version   Visualization version   GIF version

Theorem ralrimdvv 2955
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
Hypothesis
Ref Expression
ralrimdvv.1 (𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))
Assertion
Ref Expression
ralrimdvv (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimdvv
StepHypRef Expression
1 ralrimdvv.1 . . . 4 (𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))
21imp 443 . . 3 ((𝜑𝜓) → ((𝑥𝐴𝑦𝐵) → 𝜒))
32ralrimivv 2952 . 2 ((𝜑𝜓) → ∀𝑥𝐴𝑦𝐵 𝜒)
43ex 448 1 (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 1976  ∀wral 2895 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826 This theorem depends on definitions:  df-bi 195  df-an 384  df-ral 2900 This theorem is referenced by:  ralrimdvva  2956  lspsneu  18890  pmatcoe1fsupp  20267  aalioulem4  23811  fargshiftf1  25931
 Copyright terms: Public domain W3C validator