MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcdv Structured version   Visualization version   GIF version

Theorem spcdv 3286
Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 3307. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
spcdv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcdv
StepHypRef Expression
1 spcimdv.1 . 2 (𝜑𝐴𝐵)
2 spcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimpd 219 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
41, 3spcimdv 3285 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wcel 1988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-v 3197
This theorem is referenced by:  mrissmrcd  16281
  Copyright terms: Public domain W3C validator