Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vk15.4j Structured version   Visualization version   GIF version

Theorem vk15.4j 40936
Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j 40936 is vk15.4jVD 41322 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vk15.4j.1 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
vk15.4j.2 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
vk15.4j.3 ¬ ∀𝑥(𝜏𝜑)
Assertion
Ref Expression
vk15.4j (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)

Proof of Theorem vk15.4j
StepHypRef Expression
1 vk15.4j.3 . . . . . 6 ¬ ∀𝑥(𝜏𝜑)
2 exanali 1858 . . . . . 6 (∃𝑥(𝜏 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜏𝜑))
31, 2mpbir 233 . . . . 5 𝑥(𝜏 ∧ ¬ 𝜑)
4 vk15.4j.2 . . . . . 6 (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))
5 alex 1825 . . . . . . . . . 10 (∀𝑥𝜃 ↔ ¬ ∃𝑥 ¬ 𝜃)
65biimpri 230 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥𝜃)
7619.21bi 2187 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃𝜃)
8 simpl 485 . . . . . . . . 9 ((𝜏 ∧ ¬ 𝜑) → 𝜏)
98a1i 11 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → 𝜏))
10 19.8a 2179 . . . . . . . 8 ((𝜃𝜏) → ∃𝑥(𝜃𝜏))
117, 9, 10syl6an 682 . . . . . . 7 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥(𝜃𝜏)))
12 notnot 144 . . . . . . 7 (∃𝑥(𝜃𝜏) → ¬ ¬ ∃𝑥(𝜃𝜏))
1311, 12syl6 35 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ¬ ∃𝑥(𝜃𝜏)))
14 con3 156 . . . . . 6 ((∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏)) → (¬ ¬ ∃𝑥(𝜃𝜏) → ¬ ∀𝑥𝜒))
154, 13, 14mpsylsyld 69 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ ∀𝑥𝜒))
16 hbe1 2146 . . . . . 6 (∃𝑥 ¬ 𝜃 → ∀𝑥𝑥 ¬ 𝜃)
1716hbn 2302 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥 ¬ ∃𝑥 ¬ 𝜃)
18 hbn1 2145 . . . . 5 (¬ ∀𝑥𝜒 → ∀𝑥 ¬ ∀𝑥𝜒)
193, 15, 17, 18eexinst01 40934 . . . 4 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜒)
20 exnal 1826 . . . 4 (∃𝑥 ¬ 𝜒 ↔ ¬ ∀𝑥𝜒)
2119, 20sylibr 236 . . 3 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜒)
22 vk15.4j.1 . . . . . . . . 9 ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))
23 pm3.13 991 . . . . . . . . 9 (¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
2422, 23ax-mp 5 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
25 simpr 487 . . . . . . . . . . . 12 ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑)
2625a1i 11 . . . . . . . . . . 11 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ¬ 𝜑))
27 19.8a 2179 . . . . . . . . . . 11 𝜑 → ∃𝑥 ¬ 𝜑)
2826, 27syl6 35 . . . . . . . . . 10 (¬ ∃𝑥 ¬ 𝜃 → ((𝜏 ∧ ¬ 𝜑) → ∃𝑥 ¬ 𝜑))
29 hbe1 2146 . . . . . . . . . 10 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
303, 28, 17, 29eexinst01 40934 . . . . . . . . 9 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜑)
31 notnot 144 . . . . . . . . 9 (∃𝑥 ¬ 𝜑 → ¬ ¬ ∃𝑥 ¬ 𝜑)
3230, 31syl 17 . . . . . . . 8 (¬ ∃𝑥 ¬ 𝜃 → ¬ ¬ ∃𝑥 ¬ 𝜑)
33 pm2.53 847 . . . . . . . 8 ((¬ ∃𝑥 ¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)) → (¬ ¬ ∃𝑥 ¬ 𝜑 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒)))
3424, 32, 33mpsyl 68 . . . . . . 7 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
35 exanali 1858 . . . . . . . 8 (∃𝑥(𝜓 ∧ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜓𝜒))
3635con5i 40931 . . . . . . 7 (¬ ∃𝑥(𝜓 ∧ ¬ 𝜒) → ∀𝑥(𝜓𝜒))
3734, 36syl 17 . . . . . 6 (¬ ∃𝑥 ¬ 𝜃 → ∀𝑥(𝜓𝜒))
383719.21bi 2187 . . . . 5 (¬ ∃𝑥 ¬ 𝜃 → (𝜓𝜒))
3938con3d 155 . . . 4 (¬ ∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ¬ 𝜓))
40 19.8a 2179 . . . 4 𝜓 → ∃𝑥 ¬ 𝜓)
4139, 40syl6 35 . . 3 (¬ ∃𝑥 ¬ 𝜃 → (¬ 𝜒 → ∃𝑥 ¬ 𝜓))
42 hbe1 2146 . . 3 (∃𝑥 ¬ 𝜓 → ∀𝑥𝑥 ¬ 𝜓)
4321, 41, 17, 42eexinst11 40935 . 2 (¬ ∃𝑥 ¬ 𝜃 → ∃𝑥 ¬ 𝜓)
44 exnal 1826 . 2 (∃𝑥 ¬ 𝜓 ↔ ¬ ∀𝑥𝜓)
4543, 44sylib 220 1 (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  wal 1534  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-10 2144  ax-12 2176
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator