Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbcom2d-lem2 Structured version   Visualization version   GIF version

Theorem wl-sbcom2d-lem2 32975
 Description: Lemma used to prove wl-sbcom2d 32976. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
Assertion
Ref Expression
wl-sbcom2d-lem2 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) → 𝜑)))
Distinct variable groups:   𝑣,𝑢,𝑥   𝑦,𝑢,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sbcom2d-lem2
StepHypRef Expression
1 id 22 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑥)
2 wl-naev 32934 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑣)
3 wl-naev 32934 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑦 = 𝑢)
4 wl-naev 32934 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑢)
51, 2, 3, 4wl-2sb6d 32973 1 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) → 𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478  [wsb 1877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878 This theorem is referenced by:  wl-sbcom2d  32976
 Copyright terms: Public domain W3C validator