MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor2 Structured version   Visualization version   GIF version

Theorem xor2 1461
Description: Two ways to express "exclusive or." (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xor2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))

Proof of Theorem xor2
StepHypRef Expression
1 df-xor 1456 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 nbi2 931 . 2 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
31, 2bitri 262 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 194  wo 381  wa 382  wxo 1455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-xor 1456
This theorem is referenced by:  xoror  1462  xornan  1463  cador  1537  saddisjlem  14970  ifpdfxor  36647  dfxor4  36873  nanorxor  37322
  Copyright terms: Public domain W3C validator