![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > ax-distrl | Unicode version |
Description: Distribution of lambda abstraction over substitution. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
ax-distrl.1 |
![]() ![]() ![]() ![]() |
ax-distrl.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ax-distrl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kt 8 |
. 2
term ![]() | |
2 | ke 7 |
. . . 4
term ![]() | |
3 | hal |
. . . . . 6
type ![]() | |
4 | vx |
. . . . . 6
var ![]() | |
5 | hbe |
. . . . . . 7
type ![]() | |
6 | vy |
. . . . . . 7
var ![]() | |
7 | ta |
. . . . . . 7
term ![]() | |
8 | 5, 6, 7 | kl 6 |
. . . . . 6
term ![]() ![]() ![]() ![]() ![]() |
9 | 3, 4, 8 | kl 6 |
. . . . 5
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | tb |
. . . . 5
term ![]() | |
11 | 9, 10 | kc 5 |
. . . 4
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 2, 11 | kc 5 |
. . 3
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 3, 4, 7 | kl 6 |
. . . . 5
term ![]() ![]() ![]() ![]() ![]() |
14 | 13, 10 | kc 5 |
. . . 4
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 5, 6, 14 | kl 6 |
. . 3
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 12, 15 | kc 5 |
. 2
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 1, 16 | wffMMJ2 11 |
1
wff ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
This axiom is referenced by: distrl 94 |
Copyright terms: Public domain | W3C validator |