Detailed syntax breakdown of Axiom ax-distrl
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | ke 7 |
. . . 4
term = |
| 3 | | hal |
. . . . . 6
type α |
| 4 | | vx |
. . . . . 6
var x |
| 5 | | hbe |
. . . . . . 7
type β |
| 6 | | vy |
. . . . . . 7
var y |
| 7 | | ta |
. . . . . . 7
term A |
| 8 | 5, 6, 7 | kl 6 |
. . . . . 6
term λy:β
A |
| 9 | 3, 4, 8 | kl 6 |
. . . . 5
term λx:α
λy:β A |
| 10 | | tb |
. . . . 5
term B |
| 11 | 9, 10 | kc 5 |
. . . 4
term (λx:α
λy:β AB) |
| 12 | 2, 11 | kc 5 |
. . 3
term ( = (λx:α
λy:β AB)) |
| 13 | 3, 4, 7 | kl 6 |
. . . . 5
term λx:α
A |
| 14 | 13, 10 | kc 5 |
. . . 4
term (λx:α
AB) |
| 15 | 5, 6, 14 | kl 6 |
. . 3
term λy:β
(λx:α AB) |
| 16 | 12, 15 | kc 5 |
. 2
term (( = (λx:α
λy:β AB))λy:β
(λx:α AB)) |
| 17 | 1, 16 | wffMMJ2 11 |
1
wff ⊤⊧(( =
(λx:α λy:β
AB))λy:β
(λx:α AB)) |