HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  distrl Unicode version

Theorem distrl 94
Description: Distribution of lambda abstraction over substitution. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
distrl.1 |- A:ga
distrl.2 |- B:al
Assertion
Ref Expression
distrl |- T. |= [(\x:al \y:be AB) = \y:be (\x:al AB)]
Distinct variable groups:   x,y   y,B

Proof of Theorem distrl
StepHypRef Expression
1 weq 41 . 2 |- = :((be -> ga) -> ((be -> ga) -> *))
2 distrl.1 . . . . 5 |- A:ga
32wl 66 . . . 4 |- \y:be A:(be -> ga)
43wl 66 . . 3 |- \x:al \y:be A:(al -> (be -> ga))
5 distrl.2 . . 3 |- B:al
64, 5wc 50 . 2 |- (\x:al \y:be AB):(be -> ga)
72wl 66 . . . 4 |- \x:al A:(al -> ga)
87, 5wc 50 . . 3 |- (\x:al AB):ga
98wl 66 . 2 |- \y:be (\x:al AB):(be -> ga)
102, 5ax-distrl 70 . 2 |- T. |= (( = (\x:al \y:be AB))\y:be (\x:al AB))
111, 6, 9, 10dfov2 75 1 |- T. |= [(\x:al \y:be AB) = \y:be (\x:al AB)]
Colors of variables: type var term
Syntax hints:   -> ht 2  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wl 65  ax-distrl 70  ax-wov 71
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  hbl  112  ovl  117
  Copyright terms: Public domain W3C validator