| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > distrl | Unicode version | ||
| Description: Distribution of lambda abstraction over substitution. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| distrl.1 |
|
| distrl.2 |
|
| Ref | Expression |
|---|---|
| distrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weq 41 |
. 2
| |
| 2 | distrl.1 |
. . . . 5
| |
| 3 | 2 | wl 66 |
. . . 4
|
| 4 | 3 | wl 66 |
. . 3
|
| 5 | distrl.2 |
. . 3
| |
| 6 | 4, 5 | wc 50 |
. 2
|
| 7 | 2 | wl 66 |
. . . 4
|
| 8 | 7, 5 | wc 50 |
. . 3
|
| 9 | 8 | wl 66 |
. 2
|
| 10 | 2, 5 | ax-distrl 70 |
. 2
|
| 11 | 1, 6, 9, 10 | dfov2 75 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-distrl 70 ax-wov 71 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: hbl 112 ovl 117 |
| Copyright terms: Public domain | W3C validator |