Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  insti Unicode version

Theorem insti 114
 Description: Instantiate a theorem with a new term. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
insti.1
insti.2
insti.3
insti.4
insti.5
Assertion
Ref Expression
insti
Distinct variable groups:   ,,   ,

Proof of Theorem insti
StepHypRef Expression
1 insti.3 . 2
2 insti.4 . 2
31ax-cb1 29 . . 3
4 wv 64 . . 3
53, 4ax-17 105 . 2
6 insti.5 . 2
76ax-cb1 29 . . 3
87, 3eqid 83 . 2
91, 2, 5, 6, 8ax-inst 113 1
 Colors of variables: type var term Syntax hints:  tv 1  hb 3  kc 5  kl 6   ke 7  kt 8  kbr 9   wffMMJ2 11  wffMMJ2t 12 This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wov 71  ax-17 105  ax-inst 113 This theorem depends on definitions:  df-ov 73 This theorem is referenced by:  clf  115  exlimdv  167  cbvf  179  exlimd  183
 Copyright terms: Public domain W3C validator