HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  insti Unicode version

Theorem insti 114
Description: Instantiate a theorem with a new term. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
insti.1 |- C:al
insti.2 |- B:*
insti.3 |- R |= A
insti.4 |- T. |= [(\x:al By:al) = B]
insti.5 |- [x:al = C] |= [A = B]
Assertion
Ref Expression
insti |- R |= B
Distinct variable groups:   x,y,R   y,B

Proof of Theorem insti
StepHypRef Expression
1 insti.3 . 2 |- R |= A
2 insti.4 . 2 |- T. |= [(\x:al By:al) = B]
31ax-cb1 29 . . 3 |- R:*
4 wv 64 . . 3 |- y:al:al
53, 4ax-17 105 . 2 |- T. |= [(\x:al Ry:al) = R]
6 insti.5 . 2 |- [x:al = C] |= [A = B]
76ax-cb1 29 . . 3 |- [x:al = C]:*
87, 3eqid 83 . 2 |- [x:al = C] |= [R = R]
91, 2, 5, 6, 8ax-inst 113 1 |- R |= B
Colors of variables: type var term
Syntax hints:  tv 1  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wov 71  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  clf  115  exlimdv  167  cbvf  179  exlimd  183
  Copyright terms: Public domain W3C validator