| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > insti | Unicode version | ||
| Description: Instantiate a theorem with a new term. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| insti.1 |
|
| insti.2 |
|
| insti.3 |
|
| insti.4 |
|
| insti.5 |
|
| Ref | Expression |
|---|---|
| insti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | insti.3 |
. 2
| |
| 2 | insti.4 |
. 2
| |
| 3 | 1 | ax-cb1 29 |
. . 3
|
| 4 | wv 64 |
. . 3
| |
| 5 | 3, 4 | ax-17 105 |
. 2
|
| 6 | insti.5 |
. 2
| |
| 7 | 6 | ax-cb1 29 |
. . 3
|
| 8 | 7, 3 | eqid 83 |
. 2
|
| 9 | 1, 2, 5, 6, 8 | ax-inst 113 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wov 71 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: clf 115 exlimdv 167 cbvf 179 exlimd 183 |
| Copyright terms: Public domain | W3C validator |