Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > cbvf | Unicode version |
Description: Change bound variables in a lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
cbvf.1 | |
cbvf.2 | |
cbvf.3 | |
cbvf.4 |
Ref | Expression |
---|---|
cbvf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvf.1 | . . . . 5 | |
2 | 1 | wl 66 | . . . 4 |
3 | wv 64 | . . . 4 | |
4 | 2, 3 | wc 50 | . . 3 |
5 | 4 | wl 66 | . 2 |
6 | cbvf.4 | . . . . . . . 8 | |
7 | 1, 6 | eqtypi 78 | . . . . . . 7 |
8 | 7 | wl 66 | . . . . . 6 |
9 | 8, 3 | wc 50 | . . . . 5 |
10 | 4, 9 | weqi 76 | . . . 4 |
11 | wv 64 | . . . . 5 | |
12 | cbvf.3 | . . . . 5 | |
13 | wv 64 | . . . . . 6 | |
14 | 11, 13 | ax-17 105 | . . . . 5 |
15 | 1, 11, 6, 12, 14 | clf 115 | . . . 4 |
16 | weq 41 | . . . . 5 | |
17 | 16, 13 | ax-17 105 | . . . . 5 |
18 | cbvf.2 | . . . . . . 7 | |
19 | 1, 13, 18 | hbl 112 | . . . . . 6 |
20 | 3, 13 | ax-17 105 | . . . . . 6 |
21 | 2, 3, 13, 19, 20 | hbc 110 | . . . . 5 |
22 | 18 | ax-cb1 29 | . . . . . . 7 |
23 | 7, 13, 22 | hbl1 104 | . . . . . 6 |
24 | 8, 3, 13, 23, 20 | hbc 110 | . . . . 5 |
25 | 16, 4, 13, 9, 17, 21, 24 | hbov 111 | . . . 4 |
26 | 2, 11 | wc 50 | . . . . 5 |
27 | 11, 3 | weqi 76 | . . . . . . 7 |
28 | 27 | id 25 | . . . . . 6 |
29 | 2, 11, 28 | ceq2 90 | . . . . 5 |
30 | 29 | ax-cb1 29 | . . . . . . 7 |
31 | 8, 11 | wc 50 | . . . . . . . 8 |
32 | 7 | beta 92 | . . . . . . . 8 |
33 | 31, 32 | eqcomi 79 | . . . . . . 7 |
34 | 30, 33 | a1i 28 | . . . . . 6 |
35 | 8, 11, 28 | ceq2 90 | . . . . . 6 |
36 | 7, 34, 35 | eqtri 95 | . . . . 5 |
37 | 16, 26, 7, 29, 36 | oveq12 100 | . . . 4 |
38 | 3, 10, 15, 25, 37 | insti 114 | . . 3 |
39 | 4, 38 | leq 91 | . 2 |
40 | 2 | eta 178 | . 2 |
41 | 8 | eta 178 | . 2 |
42 | 5, 39, 40, 41 | 3eqtr3i 97 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 |
This theorem is referenced by: cbv 180 |
Copyright terms: Public domain | W3C validator |