| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exlimd | Unicode version | ||
| Description: Existential elimination. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| exlimd.1 |
|
| exlimd.2 |
|
| exlimd.3 |
|
| Ref | Expression |
|---|---|
| exlimd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimd.1 |
. . 3
| |
| 2 | 1 | ax-cb2 30 |
. 2
|
| 3 | wim 137 |
. . . . . 6
| |
| 4 | 1 | ax-cb1 29 |
. . . . . . . . 9
|
| 5 | 4 | wctr 34 |
. . . . . . . 8
|
| 6 | 5 | wl 66 |
. . . . . . 7
|
| 7 | wv 64 |
. . . . . . 7
| |
| 8 | 6, 7 | wc 50 |
. . . . . 6
|
| 9 | 3, 8, 2 | wov 72 |
. . . . 5
|
| 10 | 4 | wctl 33 |
. . . . . 6
|
| 11 | 10 | id 25 |
. . . . 5
|
| 12 | 3, 10, 9 | wov 72 |
. . . . . . 7
|
| 13 | 1 | ex 158 |
. . . . . . . . 9
|
| 14 | wtru 43 |
. . . . . . . . 9
| |
| 15 | 13, 14 | adantl 56 |
. . . . . . . 8
|
| 16 | 15 | ex 158 |
. . . . . . 7
|
| 17 | wv 64 |
. . . . . . . 8
| |
| 18 | 3, 17 | ax-17 105 |
. . . . . . . 8
|
| 19 | exlimd.2 |
. . . . . . . 8
| |
| 20 | 5, 17 | ax-hbl1 103 |
. . . . . . . . . 10
|
| 21 | 7, 17 | ax-17 105 |
. . . . . . . . . 10
|
| 22 | 6, 7, 17, 20, 21 | hbc 110 |
. . . . . . . . 9
|
| 23 | exlimd.3 |
. . . . . . . . 9
| |
| 24 | 3, 8, 17, 2, 18, 22, 23 | hbov 111 |
. . . . . . . 8
|
| 25 | 3, 10, 17, 9, 18, 19, 24 | hbov 111 |
. . . . . . 7
|
| 26 | 3, 5, 2 | wov 72 |
. . . . . . . 8
|
| 27 | wv 64 |
. . . . . . . . . . . 12
| |
| 28 | 27, 7 | weqi 76 |
. . . . . . . . . . 11
|
| 29 | 6, 27 | wc 50 |
. . . . . . . . . . . 12
|
| 30 | 5 | beta 92 |
. . . . . . . . . . . 12
|
| 31 | 29, 30 | eqcomi 79 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | a1i 28 |
. . . . . . . . . 10
|
| 33 | 28 | id 25 |
. . . . . . . . . . 11
|
| 34 | 6, 27, 33 | ceq2 90 |
. . . . . . . . . 10
|
| 35 | 5, 32, 34 | eqtri 95 |
. . . . . . . . 9
|
| 36 | 3, 5, 2, 35 | oveq1 99 |
. . . . . . . 8
|
| 37 | 3, 10, 26, 36 | oveq2 101 |
. . . . . . 7
|
| 38 | 7, 12, 16, 25, 37 | insti 114 |
. . . . . 6
|
| 39 | 10, 38 | a1i 28 |
. . . . 5
|
| 40 | 9, 11, 39 | mpd 156 |
. . . 4
|
| 41 | 40 | alrimiv 151 |
. . 3
|
| 42 | wex 139 |
. . . 4
| |
| 43 | 42, 6 | wc 50 |
. . 3
|
| 44 | 41, 43 | adantr 55 |
. 2
|
| 45 | 10, 43 | simpr 23 |
. . . 4
|
| 46 | 44 | ax-cb1 29 |
. . . . 5
|
| 47 | 6 | exval 143 |
. . . . 5
|
| 48 | 46, 47 | a1i 28 |
. . . 4
|
| 49 | 45, 48 | mpbi 82 |
. . 3
|
| 50 | wal 134 |
. . . . . 6
| |
| 51 | wv 64 |
. . . . . . . 8
| |
| 52 | 3, 8, 51 | wov 72 |
. . . . . . 7
|
| 53 | 52 | wl 66 |
. . . . . 6
|
| 54 | 50, 53 | wc 50 |
. . . . 5
|
| 55 | 3, 54, 51 | wov 72 |
. . . 4
|
| 56 | 51, 2 | weqi 76 |
. . . . . . . . 9
|
| 57 | 56 | id 25 |
. . . . . . . 8
|
| 58 | 3, 8, 51, 57 | oveq2 101 |
. . . . . . 7
|
| 59 | 52, 58 | leq 91 |
. . . . . 6
|
| 60 | 50, 53, 59 | ceq2 90 |
. . . . 5
|
| 61 | 3, 54, 51, 60, 57 | oveq12 100 |
. . . 4
|
| 62 | 55, 2, 61 | cla4v 152 |
. . 3
|
| 63 | 49, 62 | syl 16 |
. 2
|
| 64 | 2, 44, 63 | mpd 156 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
| This theorem is referenced by: eximdv 185 alnex 186 |
| Copyright terms: Public domain | W3C validator |