Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > exlimd | Unicode version |
Description: Existential elimination. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
exlimd.1 | |
exlimd.2 | |
exlimd.3 |
Ref | Expression |
---|---|
exlimd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimd.1 | . . 3 | |
2 | 1 | ax-cb2 30 | . 2 |
3 | wim 137 | . . . . . 6 | |
4 | 1 | ax-cb1 29 | . . . . . . . . 9 |
5 | 4 | wctr 34 | . . . . . . . 8 |
6 | 5 | wl 66 | . . . . . . 7 |
7 | wv 64 | . . . . . . 7 | |
8 | 6, 7 | wc 50 | . . . . . 6 |
9 | 3, 8, 2 | wov 72 | . . . . 5 |
10 | 4 | wctl 33 | . . . . . 6 |
11 | 10 | id 25 | . . . . 5 |
12 | 3, 10, 9 | wov 72 | . . . . . . 7 |
13 | 1 | ex 158 | . . . . . . . . 9 |
14 | wtru 43 | . . . . . . . . 9 | |
15 | 13, 14 | adantl 56 | . . . . . . . 8 |
16 | 15 | ex 158 | . . . . . . 7 |
17 | wv 64 | . . . . . . . 8 | |
18 | 3, 17 | ax-17 105 | . . . . . . . 8 |
19 | exlimd.2 | . . . . . . . 8 | |
20 | 5, 17 | ax-hbl1 103 | . . . . . . . . . 10 |
21 | 7, 17 | ax-17 105 | . . . . . . . . . 10 |
22 | 6, 7, 17, 20, 21 | hbc 110 | . . . . . . . . 9 |
23 | exlimd.3 | . . . . . . . . 9 | |
24 | 3, 8, 17, 2, 18, 22, 23 | hbov 111 | . . . . . . . 8 |
25 | 3, 10, 17, 9, 18, 19, 24 | hbov 111 | . . . . . . 7 |
26 | 3, 5, 2 | wov 72 | . . . . . . . 8 |
27 | wv 64 | . . . . . . . . . . . 12 | |
28 | 27, 7 | weqi 76 | . . . . . . . . . . 11 |
29 | 6, 27 | wc 50 | . . . . . . . . . . . 12 |
30 | 5 | beta 92 | . . . . . . . . . . . 12 |
31 | 29, 30 | eqcomi 79 | . . . . . . . . . . 11 |
32 | 28, 31 | a1i 28 | . . . . . . . . . 10 |
33 | 28 | id 25 | . . . . . . . . . . 11 |
34 | 6, 27, 33 | ceq2 90 | . . . . . . . . . 10 |
35 | 5, 32, 34 | eqtri 95 | . . . . . . . . 9 |
36 | 3, 5, 2, 35 | oveq1 99 | . . . . . . . 8 |
37 | 3, 10, 26, 36 | oveq2 101 | . . . . . . 7 |
38 | 7, 12, 16, 25, 37 | insti 114 | . . . . . 6 |
39 | 10, 38 | a1i 28 | . . . . 5 |
40 | 9, 11, 39 | mpd 156 | . . . 4 |
41 | 40 | alrimiv 151 | . . 3 |
42 | wex 139 | . . . 4 | |
43 | 42, 6 | wc 50 | . . 3 |
44 | 41, 43 | adantr 55 | . 2 |
45 | 10, 43 | simpr 23 | . . . 4 |
46 | 44 | ax-cb1 29 | . . . . 5 |
47 | 6 | exval 143 | . . . . 5 |
48 | 46, 47 | a1i 28 | . . . 4 |
49 | 45, 48 | mpbi 82 | . . 3 |
50 | wal 134 | . . . . . 6 | |
51 | wv 64 | . . . . . . . 8 | |
52 | 3, 8, 51 | wov 72 | . . . . . . 7 |
53 | 52 | wl 66 | . . . . . 6 |
54 | 50, 53 | wc 50 | . . . . 5 |
55 | 3, 54, 51 | wov 72 | . . . 4 |
56 | 51, 2 | weqi 76 | . . . . . . . . 9 |
57 | 56 | id 25 | . . . . . . . 8 |
58 | 3, 8, 51, 57 | oveq2 101 | . . . . . . 7 |
59 | 52, 58 | leq 91 | . . . . . 6 |
60 | 50, 53, 59 | ceq2 90 | . . . . 5 |
61 | 3, 54, 51, 60, 57 | oveq12 100 | . . . 4 |
62 | 55, 2, 61 | cla4v 152 | . . 3 |
63 | 49, 62 | syl 16 | . 2 |
64 | 2, 44, 63 | mpd 156 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 kct 10 wffMMJ2 11 tim 121 tal 122 tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: eximdv 185 alnex 186 |
Copyright terms: Public domain | W3C validator |