HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  anasss GIF version

Theorem anasss 61
Description: Associativity for context. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypothesis
Ref Expression
an32s.1 ((R, S), T)⊧A
Assertion
Ref Expression
anasss (R, (S, T))⊧A

Proof of Theorem anasss
StepHypRef Expression
1 an32s.1 . . . . . . . 8 ((R, S), T)⊧A
21ax-cb1 29 . . . . . . 7 ((R, S), T):∗
32wctl 33 . . . . . 6 (R, S):∗
43id 25 . . . . 5 (R, S)⊧(R, S)
54ancoms 54 . . . 4 (S, R)⊧(R, S)
65, 1sylan 59 . . 3 ((S, R), T)⊧A
76an32s 60 . 2 ((S, T), R)⊧A
87ancoms 54 1 (R, (S, T))⊧A
Colors of variables: type var term
Syntax hints:  kct 10  wffMMJ2 11
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-cb1 29  ax-wctl 31  ax-wctr 32
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator