Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > anasss | GIF version |
Description: Associativity for context. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
an32s.1 | ⊢ ((R, S), T)⊧A |
Ref | Expression |
---|---|
anasss | ⊢ (R, (S, T))⊧A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32s.1 | . . . . . . . 8 ⊢ ((R, S), T)⊧A | |
2 | 1 | ax-cb1 29 | . . . . . . 7 ⊢ ((R, S), T):∗ |
3 | 2 | wctl 33 | . . . . . 6 ⊢ (R, S):∗ |
4 | 3 | id 25 | . . . . 5 ⊢ (R, S)⊧(R, S) |
5 | 4 | ancoms 54 | . . . 4 ⊢ (S, R)⊧(R, S) |
6 | 5, 1 | sylan 59 | . . 3 ⊢ ((S, R), T)⊧A |
7 | 6 | an32s 60 | . 2 ⊢ ((S, T), R)⊧A |
8 | 7 | ancoms 54 | 1 ⊢ (R, (S, T))⊧A |
Colors of variables: type var term |
Syntax hints: kct 10 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-cb1 29 ax-wctl 31 ax-wctr 32 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |