Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > sylan | GIF version |
Description: Syllogism inference. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
sylan.1 | ⊢ R⊧S |
sylan.2 | ⊢ (S, T)⊧A |
Ref | Expression |
---|---|
sylan | ⊢ (R, T)⊧A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan.1 | . . 3 ⊢ R⊧S | |
2 | sylan.2 | . . . . 5 ⊢ (S, T)⊧A | |
3 | 2 | ax-cb1 29 | . . . 4 ⊢ (S, T):∗ |
4 | 3 | wctr 34 | . . 3 ⊢ T:∗ |
5 | 1, 4 | adantr 55 | . 2 ⊢ (R, T)⊧S |
6 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
7 | 6, 4 | simpr 23 | . 2 ⊢ (R, T)⊧T |
8 | 5, 7, 2 | syl2anc 19 | 1 ⊢ (R, T)⊧A |
Colors of variables: type var term |
Syntax hints: kct 10 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-cb1 29 ax-wctr 32 |
This theorem is referenced by: anasss 61 |
Copyright terms: Public domain | W3C validator |