Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > anassrs | GIF version |
Description: Associativity for context. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
anassrs.1 | ⊢ (R, (S, T))⊧A |
Ref | Expression |
---|---|
anassrs | ⊢ ((R, S), T)⊧A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anassrs.1 | . . . . . 6 ⊢ (R, (S, T))⊧A | |
2 | 1 | ax-cb1 29 | . . . . 5 ⊢ (R, (S, T)):∗ |
3 | 2 | wctl 33 | . . . 4 ⊢ R:∗ |
4 | 2 | wctr 34 | . . . . 5 ⊢ (S, T):∗ |
5 | 4 | wctl 33 | . . . 4 ⊢ S:∗ |
6 | 3, 5 | simpl 22 | . . 3 ⊢ (R, S)⊧R |
7 | 4 | wctr 34 | . . 3 ⊢ T:∗ |
8 | 6, 7 | adantr 55 | . 2 ⊢ ((R, S), T)⊧R |
9 | 3, 5 | simpr 23 | . . 3 ⊢ (R, S)⊧S |
10 | 9, 7 | ct1 57 | . 2 ⊢ ((R, S), T)⊧(S, T) |
11 | 8, 10, 1 | syl2anc 19 | 1 ⊢ ((R, S), T)⊧A |
Colors of variables: type var term |
Syntax hints: kct 10 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-cb1 29 ax-wctl 31 ax-wctr 32 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |