Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > id | GIF version |
Description: The identity inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
ax-id.1 | ⊢ R:∗ |
Ref | Expression |
---|---|
id | ⊢ R⊧R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-id.1 | . 2 ⊢ R:∗ | |
2 | 1 | ax-id 24 | 1 ⊢ R⊧R |
Colors of variables: type var term |
Syntax hints: ∗hb 3 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-id 24 |
This theorem is referenced by: mpdan 35 trul 39 tru 44 anasss 61 hbxfr 108 clf 115 alval 142 exval 143 euval 144 notval 145 imval 146 orval 147 anval 148 ax4g 149 pm2.21 153 dfan2 154 ecase 163 exlimdv2 166 exlimdv 167 ax4e 168 cla4ev 169 eta 178 cbvf 179 leqf 181 exlimd 183 exnal1 187 isfree 188 ac 197 exmid 199 notnot 200 ax3 205 ax9 212 ax10 213 ax11 214 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |