Detailed syntax breakdown of Axiom ax-ac
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | tal 122 |
. . 3
term ∀ |
| 3 | | hal |
. . . . 5
type α |
| 4 | | hb 3 |
. . . . 5
type ∗ |
| 5 | 3, 4 | ht 2 |
. . . 4
type (α → ∗) |
| 6 | | vp |
. . . 4
var p |
| 7 | | vx |
. . . . . 6
var x |
| 8 | 5, 6 | tv 1 |
. . . . . . . 8
term p:(α
→ ∗) |
| 9 | 3, 7 | tv 1 |
. . . . . . . 8
term x:α |
| 10 | 8, 9 | kc 5 |
. . . . . . 7
term (p:(α
→ ∗)x:α) |
| 11 | | tat 191 |
. . . . . . . . 9
term ε |
| 12 | 11, 8 | kc 5 |
. . . . . . . 8
term (εp:(α
→ ∗)) |
| 13 | 8, 12 | kc 5 |
. . . . . . 7
term (p:(α
→ ∗)(εp:(α → ∗))) |
| 14 | | tim 121 |
. . . . . . 7
term ⇒ |
| 15 | 10, 13, 14 | kbr 9 |
. . . . . 6
term [(p:(α
→ ∗)x:α) ⇒ (p:(α
→ ∗)(εp:(α → ∗)))] |
| 16 | 3, 7, 15 | kl 6 |
. . . . 5
term λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))] |
| 17 | 2, 16 | kc 5 |
. . . 4
term (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))]) |
| 18 | 5, 6, 17 | kl 6 |
. . 3
term λp:(α
→ ∗) (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))]) |
| 19 | 2, 18 | kc 5 |
. 2
term (∀λp:(α
→ ∗) (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))])) |
| 20 | 1, 19 | wffMMJ2 11 |
1
wff ⊤⊧(∀λp:(α
→ ∗) (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))])) |