Detailed syntax breakdown of Definition df-fo
Step | Hyp | Ref
| Expression |
1 | | kt 8 |
. 2
term ⊤ |
2 | | tfo 190 |
. . 3
term onto |
3 | | hal |
. . . . 5
type α |
4 | | hbe |
. . . . 5
type β |
5 | 3, 4 | ht 2 |
. . . 4
type (α → β) |
6 | | vf |
. . . 4
var f |
7 | | tal 122 |
. . . . 5
term ∀ |
8 | | vy |
. . . . . 6
var y |
9 | | tex 123 |
. . . . . . 7
term ∃ |
10 | | vx |
. . . . . . . 8
var x |
11 | 4, 8 | tv 1 |
. . . . . . . . 9
term y:β |
12 | 5, 6 | tv 1 |
. . . . . . . . . 10
term f:(α
→ β) |
13 | 3, 10 | tv 1 |
. . . . . . . . . 10
term x:α |
14 | 12, 13 | kc 5 |
. . . . . . . . 9
term (f:(α
→ β)x:α) |
15 | | ke 7 |
. . . . . . . . 9
term = |
16 | 11, 14, 15 | kbr 9 |
. . . . . . . 8
term [y:β =
(f:(α → β)x:α)] |
17 | 3, 10, 16 | kl 6 |
. . . . . . 7
term λx:α
[y:β = (f:(α
→ β)x:α)] |
18 | 9, 17 | kc 5 |
. . . . . 6
term (∃λx:α
[y:β = (f:(α
→ β)x:α)]) |
19 | 4, 8, 18 | kl 6 |
. . . . 5
term λy:β (∃λx:α
[y:β = (f:(α
→ β)x:α)]) |
20 | 7, 19 | kc 5 |
. . . 4
term (∀λy:β (∃λx:α
[y:β = (f:(α
→ β)x:α)])) |
21 | 5, 6, 20 | kl 6 |
. . 3
term λf:(α
→ β) (∀λy:β (∃λx:α
[y:β = (f:(α
→ β)x:α)])) |
22 | 2, 21, 15 | kbr 9 |
. 2
term [onto = λf:(α
→ β) (∀λy:β (∃λx:α
[y:β = (f:(α
→ β)x:α)]))] |
23 | 1, 22 | wffMMJ2 11 |
1
wff ⊤⊧[onto =
λf:(α → β) (∀λy:β (∃λx:α
[y:β = (f:(α
→ β)x:α)]))] |