Step | Hyp | Ref
| Expression |
1 | | ac.1 |
. . 3
⊢ F:(α
→ ∗) |
2 | | wat 193 |
. . . 4
⊢ ε:((α → ∗) → α) |
3 | 2, 1 | wc 50 |
. . 3
⊢ (εF):α |
4 | 1, 3 | wc 50 |
. 2
⊢ (F(εF)):∗ |
5 | | ac.2 |
. . . 4
⊢ A:α |
6 | 1, 5 | wc 50 |
. . 3
⊢ (FA):∗ |
7 | 6 | id 25 |
. 2
⊢ (FA)⊧(FA) |
8 | 7 | ax-cb1 29 |
. . 3
⊢ (FA):∗ |
9 | | ax-ac 196 |
. . . . 5
⊢
⊤⊧(∀λp:(α
→ ∗) (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))])) |
10 | | wal 134 |
. . . . . . 7
⊢ ∀:((α
→ ∗) → ∗) |
11 | | wim 137 |
. . . . . . . . 9
⊢ ⇒ :(∗
→ (∗ → ∗)) |
12 | | wv 64 |
. . . . . . . . . 10
⊢ p:(α
→ ∗):(α →
∗) |
13 | | wv 64 |
. . . . . . . . . 10
⊢ x:α:α |
14 | 12, 13 | wc 50 |
. . . . . . . . 9
⊢ (p:(α
→ ∗)x:α):∗ |
15 | 2, 12 | wc 50 |
. . . . . . . . . 10
⊢ (εp:(α
→ ∗)):α |
16 | 12, 15 | wc 50 |
. . . . . . . . 9
⊢ (p:(α
→ ∗)(εp:(α →
∗))):∗ |
17 | 11, 14, 16 | wov 72 |
. . . . . . . 8
⊢ [(p:(α
→ ∗)x:α) ⇒ (p:(α
→ ∗)(εp:(α →
∗)))]:∗ |
18 | 17 | wl 66 |
. . . . . . 7
⊢
λx:α [(p:(α
→ ∗)x:α) ⇒ (p:(α
→ ∗)(εp:(α → ∗)))]:(α → ∗) |
19 | 10, 18 | wc 50 |
. . . . . 6
⊢ (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))]):∗ |
20 | 12, 1 | weqi 76 |
. . . . . . . . . . 11
⊢ [p:(α
→ ∗) = F]:∗ |
21 | 20 | id 25 |
. . . . . . . . . 10
⊢ [p:(α
→ ∗) = F]⊧[p:(α
→ ∗) = F] |
22 | 12, 13, 21 | ceq1 89 |
. . . . . . . . 9
⊢ [p:(α
→ ∗) = F]⊧[(p:(α
→ ∗)x:α) = (Fx:α)] |
23 | 2, 12, 21 | ceq2 90 |
. . . . . . . . . 10
⊢ [p:(α
→ ∗) = F]⊧[(εp:(α
→ ∗)) = (εF)] |
24 | 12, 15, 21, 23 | ceq12 88 |
. . . . . . . . 9
⊢ [p:(α
→ ∗) = F]⊧[(p:(α
→ ∗)(εp:(α → ∗))) = (F(εF))] |
25 | 11, 14, 16, 22, 24 | oveq12 100 |
. . . . . . . 8
⊢ [p:(α
→ ∗) = F]⊧[[(p:(α
→ ∗)x:α) ⇒ (p:(α
→ ∗)(εp:(α → ∗)))] = [(Fx:α) ⇒ (F(εF))]] |
26 | 17, 25 | leq 91 |
. . . . . . 7
⊢ [p:(α
→ ∗) = F]⊧[λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))] = λx:α
[(Fx:α)
⇒ (F(εF))]] |
27 | 10, 18, 26 | ceq2 90 |
. . . . . 6
⊢ [p:(α
→ ∗) = F]⊧[(∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))]) = (∀λx:α
[(Fx:α)
⇒ (F(εF))])] |
28 | 19, 1, 27 | cla4v 152 |
. . . . 5
⊢ (∀λp:(α
→ ∗) (∀λx:α
[(p:(α → ∗)x:α)
⇒ (p:(α → ∗)(εp:(α
→ ∗)))]))⊧(∀λx:α
[(Fx:α)
⇒ (F(εF))]) |
29 | 9, 28 | syl 16 |
. . . 4
⊢
⊤⊧(∀λx:α
[(Fx:α)
⇒ (F(εF))]) |
30 | 17, 25 | eqtypi 78 |
. . . . 5
⊢ [(Fx:α) ⇒ (F(εF))]:∗ |
31 | 1, 13 | wc 50 |
. . . . . 6
⊢ (Fx:α):∗ |
32 | 13, 5 | weqi 76 |
. . . . . . . 8
⊢ [x:α =
A]:∗ |
33 | 32 | id 25 |
. . . . . . 7
⊢ [x:α =
A]⊧[x:α =
A] |
34 | 1, 13, 33 | ceq2 90 |
. . . . . 6
⊢ [x:α =
A]⊧[(Fx:α) = (FA)] |
35 | 11, 31, 4, 34 | oveq1 99 |
. . . . 5
⊢ [x:α =
A]⊧[[(Fx:α) ⇒ (F(εF))]
= [(FA)
⇒ (F(εF))]] |
36 | 30, 5, 35 | cla4v 152 |
. . . 4
⊢ (∀λx:α
[(Fx:α)
⇒ (F(εF))])⊧[(FA) ⇒
(F(εF))] |
37 | 29, 36 | syl 16 |
. . 3
⊢
⊤⊧[(FA) ⇒ (F(εF))] |
38 | 8, 37 | a1i 28 |
. 2
⊢ (FA)⊧[(FA) ⇒
(F(εF))] |
39 | 4, 7, 38 | mpd 156 |
1
⊢ (FA)⊧(F(εF)) |