Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax-ceq | GIF version |
Description: Equality theorem for combination. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
ax-ceq.1 | ⊢ F:(α → β) |
ax-ceq.2 | ⊢ T:(α → β) |
ax-ceq.3 | ⊢ A:α |
ax-ceq.4 | ⊢ B:α |
Ref | Expression |
---|---|
ax-ceq | ⊢ ((( = F)T), (( = A)B))⊧(( = (FA))(TB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ke 7 | . . . . 5 term = | |
2 | tf | . . . . 5 term F | |
3 | 1, 2 | kc 5 | . . . 4 term ( = F) |
4 | tt | . . . 4 term T | |
5 | 3, 4 | kc 5 | . . 3 term (( = F)T) |
6 | ta | . . . . 5 term A | |
7 | 1, 6 | kc 5 | . . . 4 term ( = A) |
8 | tb | . . . 4 term B | |
9 | 7, 8 | kc 5 | . . 3 term (( = A)B) |
10 | 5, 9 | kct 10 | . 2 term ((( = F)T), (( = A)B)) |
11 | 2, 6 | kc 5 | . . . 4 term (FA) |
12 | 1, 11 | kc 5 | . . 3 term ( = (FA)) |
13 | 4, 8 | kc 5 | . . 3 term (TB) |
14 | 12, 13 | kc 5 | . 2 term (( = (FA))(TB)) |
15 | 10, 14 | wffMMJ2 11 | 1 wff ((( = F)T), (( = A)B))⊧(( = (FA))(TB)) |
Colors of variables: type var term |
This axiom is referenced by: eqcomx 52 ceq12 88 |
Copyright terms: Public domain | W3C validator |