Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wc | GIF version |
Description: The type of a combination. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
wc.1 | ⊢ F:(α → β) |
wc.2 | ⊢ T:α |
Ref | Expression |
---|---|
wc | ⊢ (FT):β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wc.1 | . 2 ⊢ F:(α → β) | |
2 | wc.2 | . 2 ⊢ T:α | |
3 | 1, 2 | ax-wc 49 | 1 ⊢ (FT):β |
Colors of variables: type var term |
Syntax hints: → ht 2 kc 5 wffMMJ2t 12 |
This theorem was proved from axioms: ax-wc 49 |
This theorem is referenced by: eqcomx 52 ceq12 88 beta 92 distrc 93 distrl 94 eqtri 95 oveq123 98 hbxfrf 107 hbc 110 hbov 111 hbl 112 clf 115 ovl 117 wfal 135 wex 139 wor 140 weu 141 alval 142 exval 143 euval 144 notval 145 orval 147 ax4g 149 dfan2 154 notval2 159 notnot1 160 con3d 162 exlimdv2 166 exlimdv 167 ax4e 168 eta 178 cbvf 179 leqf 181 exlimd 183 alimdv 184 alnex 186 exnal1 187 ac 197 dfex2 198 exmid 199 notnot 200 exnal 201 ax3 205 ax5 207 ax6 208 ax7 209 ax9 212 ax10 213 ax11 214 ax12 215 ax13 216 ax14 217 axext 219 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |