Detailed syntax breakdown of Axiom ax-distrc
Step | Hyp | Ref
| Expression |
1 | | kt 8 |
. 2
term ⊤ |
2 | | ke 7 |
. . . 4
term = |
3 | | hal |
. . . . . 6
type α |
4 | | vx |
. . . . . 6
var x |
5 | | tf |
. . . . . . 7
term F |
6 | | ta |
. . . . . . 7
term A |
7 | 5, 6 | kc 5 |
. . . . . 6
term (FA) |
8 | 3, 4, 7 | kl 6 |
. . . . 5
term λx:α
(FA) |
9 | | tb |
. . . . 5
term B |
10 | 8, 9 | kc 5 |
. . . 4
term (λx:α
(FA)B) |
11 | 2, 10 | kc 5 |
. . 3
term ( = (λx:α
(FA)B)) |
12 | 3, 4, 5 | kl 6 |
. . . . 5
term λx:α
F |
13 | 12, 9 | kc 5 |
. . . 4
term (λx:α
FB) |
14 | 3, 4, 6 | kl 6 |
. . . . 5
term λx:α
A |
15 | 14, 9 | kc 5 |
. . . 4
term (λx:α
AB) |
16 | 13, 15 | kc 5 |
. . 3
term ((λx:α
FB)(λx:α
AB)) |
17 | 11, 16 | kc 5 |
. 2
term (( = (λx:α
(FA)B))((λx:α
FB)(λx:α
AB))) |
18 | 1, 17 | wffMMJ2 11 |
1
wff ⊤⊧(( =
(λx:α (FA)B))((λx:α
FB)(λx:α
AB))) |