Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > distrc | GIF version |
Description: Distribution of combination over substitution. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
distrc.1 | ⊢ F:(β → γ) |
distrc.2 | ⊢ A:β |
distrc.3 | ⊢ B:α |
Ref | Expression |
---|---|
distrc | ⊢ ⊤⊧[(λx:α (FA)B) = ((λx:α FB)(λx:α AB))] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :(γ → (γ → ∗)) | |
2 | distrc.1 | . . . . 5 ⊢ F:(β → γ) | |
3 | distrc.2 | . . . . 5 ⊢ A:β | |
4 | 2, 3 | wc 50 | . . . 4 ⊢ (FA):γ |
5 | 4 | wl 66 | . . 3 ⊢ λx:α (FA):(α → γ) |
6 | distrc.3 | . . 3 ⊢ B:α | |
7 | 5, 6 | wc 50 | . 2 ⊢ (λx:α (FA)B):γ |
8 | 2 | wl 66 | . . . 4 ⊢ λx:α F:(α → (β → γ)) |
9 | 8, 6 | wc 50 | . . 3 ⊢ (λx:α FB):(β → γ) |
10 | 3 | wl 66 | . . . 4 ⊢ λx:α A:(α → β) |
11 | 10, 6 | wc 50 | . . 3 ⊢ (λx:α AB):β |
12 | 9, 11 | wc 50 | . 2 ⊢ ((λx:α FB)(λx:α AB)):γ |
13 | 3, 6, 2 | ax-distrc 68 | . 2 ⊢ ⊤⊧(( = (λx:α (FA)B))((λx:α FB)(λx:α AB))) |
14 | 1, 7, 12, 13 | dfov2 75 | 1 ⊢ ⊤⊧[(λx:α (FA)B) = ((λx:α FB)(λx:α AB))] |
Colors of variables: type var term |
Syntax hints: → ht 2 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-distrc 68 ax-wov 71 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbc 110 |
Copyright terms: Public domain | W3C validator |