Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax-leq | GIF version |
Description: Equality theorem for abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
ax-leq.1 | ⊢ A:β |
ax-leq.2 | ⊢ B:β |
ax-leq.3 | ⊢ R⊧(( = A)B) |
Ref | Expression |
---|---|
ax-leq | ⊢ R⊧(( = λx:α A)λx:α B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr | . 2 term R | |
2 | ke 7 | . . . 4 term = | |
3 | hal | . . . . 5 type α | |
4 | vx | . . . . 5 var x | |
5 | ta | . . . . 5 term A | |
6 | 3, 4, 5 | kl 6 | . . . 4 term λx:α A |
7 | 2, 6 | kc 5 | . . 3 term ( = λx:α A) |
8 | tb | . . . 4 term B | |
9 | 3, 4, 8 | kl 6 | . . 3 term λx:α B |
10 | 7, 9 | kc 5 | . 2 term (( = λx:α A)λx:α B) |
11 | 1, 10 | wffMMJ2 11 | 1 wff R⊧(( = λx:α A)λx:α B) |
Colors of variables: type var term |
This axiom is referenced by: leq 91 |
Copyright terms: Public domain | W3C validator |