HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax-eqtypri GIF version

Axiom ax-eqtypri 80
Description: Deduce equality of types from equality of expressions. (This is unnecessary but eliminates a lot of hypotheses.) (New usage is discouraged.) (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
eqtypri.1 A:α
eqtypri.2 R⊧[B = A]
Assertion
Ref Expression
ax-eqtypri B:α

Detailed syntax breakdown of Axiom ax-eqtypri
StepHypRef Expression
1 hal . 2 type α
2 tb . 2 term B
31, 2wffMMJ2t 12 1 wff B:α
Colors of variables: type var term
This axiom is referenced by:  eqtypri  81
  Copyright terms: Public domain W3C validator