Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > eqcomi | GIF version |
Description: Commutativity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
eqcomi.1 | ⊢ A:α |
eqcomi.2 | ⊢ R⊧[A = B] |
Ref | Expression |
---|---|
eqcomi | ⊢ R⊧[B = A] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :(α → (α → ∗)) | |
2 | eqcomi.1 | . . 3 ⊢ A:α | |
3 | eqcomi.2 | . . 3 ⊢ R⊧[A = B] | |
4 | 2, 3 | eqtypi 78 | . 2 ⊢ B:α |
5 | 1, 2, 4, 3 | dfov1 74 | . . 3 ⊢ R⊧(( = A)B) |
6 | 2, 4, 5 | eqcomx 52 | . 2 ⊢ R⊧(( = B)A) |
7 | 1, 4, 2, 6 | dfov2 75 | 1 ⊢ R⊧[B = A] |
Colors of variables: type var term |
Syntax hints: = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: mpbir 87 3eqtr4i 96 3eqtr3i 97 hbth 109 alrimiv 151 dfan2 154 hbct 155 olc 164 orc 165 exlimdv 167 cbvf 179 alrimi 182 exlimd 183 exmid 199 exnal 201 ax8 211 ax9 212 ax10 213 |
Copyright terms: Public domain | W3C validator |