HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  eqtypri GIF version

Theorem eqtypri 81
Description: Deduce equality of types from equality of expressions. (This is unnecessary but eliminates a lot of hypotheses.) (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
eqtypri.1 A:α
eqtypri.2 R⊧[B = A]
Assertion
Ref Expression
eqtypri B:α

Proof of Theorem eqtypri
StepHypRef Expression
1 eqtypri.1 . 2 A:α
2 eqtypri.2 . 2 R⊧[B = A]
31, 2ax-eqtypri 80 1 B:α
Colors of variables: type var term
Syntax hints:   = ke 7  [kbr 9  wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-eqtypri 80
This theorem is referenced by:  mpbir  87  3eqtr4i  96  hbc  110  wal  134  wfal  135  wan  136  wim  137  wnot  138  wex  139  wor  140  weu  141
  Copyright terms: Public domain W3C validator