Detailed syntax breakdown of Definition df-f11
Step | Hyp | Ref
| Expression |
1 | | kt 8 |
. 2
term ⊤ |
2 | | tf11 189 |
. . 3
term 1-1 |
3 | | hal |
. . . . 5
type α |
4 | | hbe |
. . . . 5
type β |
5 | 3, 4 | ht 2 |
. . . 4
type (α → β) |
6 | | vf |
. . . 4
var f |
7 | | tal 122 |
. . . . 5
term ∀ |
8 | | vx |
. . . . . 6
var x |
9 | | vy |
. . . . . . . 8
var y |
10 | 5, 6 | tv 1 |
. . . . . . . . . . 11
term f:(α
→ β) |
11 | 3, 8 | tv 1 |
. . . . . . . . . . 11
term x:α |
12 | 10, 11 | kc 5 |
. . . . . . . . . 10
term (f:(α
→ β)x:α) |
13 | 3, 9 | tv 1 |
. . . . . . . . . . 11
term y:α |
14 | 10, 13 | kc 5 |
. . . . . . . . . 10
term (f:(α
→ β)y:α) |
15 | | ke 7 |
. . . . . . . . . 10
term = |
16 | 12, 14, 15 | kbr 9 |
. . . . . . . . 9
term [(f:(α
→ β)x:α) =
(f:(α → β)y:α)] |
17 | 11, 13, 15 | kbr 9 |
. . . . . . . . 9
term [x:α =
y:α] |
18 | | tim 121 |
. . . . . . . . 9
term ⇒ |
19 | 16, 17, 18 | kbr 9 |
. . . . . . . 8
term [[(f:(α
→ β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]] |
20 | 3, 9, 19 | kl 6 |
. . . . . . 7
term λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]] |
21 | 7, 20 | kc 5 |
. . . . . 6
term (∀λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]]) |
22 | 3, 8, 21 | kl 6 |
. . . . 5
term λx:α (∀λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]]) |
23 | 7, 22 | kc 5 |
. . . 4
term (∀λx:α (∀λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]])) |
24 | 5, 6, 23 | kl 6 |
. . 3
term λf:(α
→ β) (∀λx:α (∀λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]])) |
25 | 2, 24, 15 | kbr 9 |
. 2
term [1-1 = λf:(α
→ β) (∀λx:α (∀λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]]))] |
26 | 1, 25 | wffMMJ2 11 |
1
wff ⊤⊧[1-1 =
λf:(α → β) (∀λx:α (∀λy:α
[[(f:(α → β)x:α) =
(f:(α → β)y:α)]
⇒ [x:α = y:α]]))] |