HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  wat GIF version

Theorem wat 193
Description: The type of the indefinite descriptor. (Contributed by Mario Carneiro, 10-Oct-2014.)
Assertion
Ref Expression
wat ε:((α → ∗) → α)

Proof of Theorem wat
StepHypRef Expression
1 ax-wat 192 1 ε:((α → ∗) → α)
Colors of variables: type var term
Syntax hints:  ht 2  hb 3  wffMMJ2t 12  εtat 191
This theorem was proved from axioms:  ax-wat 192
This theorem is referenced by:  ac  197  dfex2  198  exmid  199
  Copyright terms: Public domain W3C validator