Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > df-not | GIF version |
Description: Define the negation operator. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
df-not | ⊢ ⊤⊧[¬ = λp:∗ [p:∗ ⇒ ⊥]] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kt 8 | . 2 term ⊤ | |
2 | tne 120 | . . 3 term ¬ | |
3 | hb 3 | . . . 4 type ∗ | |
4 | vp | . . . 4 var p | |
5 | 3, 4 | tv 1 | . . . . 5 term p:∗ |
6 | tfal 118 | . . . . 5 term ⊥ | |
7 | tim 121 | . . . . 5 term ⇒ | |
8 | 5, 6, 7 | kbr 9 | . . . 4 term [p:∗ ⇒ ⊥] |
9 | 3, 4, 8 | kl 6 | . . 3 term λp:∗ [p:∗ ⇒ ⊥] |
10 | ke 7 | . . 3 term = | |
11 | 2, 9, 10 | kbr 9 | . 2 term [¬ = λp:∗ [p:∗ ⇒ ⊥]] |
12 | 1, 11 | wffMMJ2 11 | 1 wff ⊤⊧[¬ = λp:∗ [p:∗ ⇒ ⊥]] |
Colors of variables: type var term |
This definition is referenced by: wnot 138 notval 145 |
Copyright terms: Public domain | W3C validator |