| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wnot | GIF version | ||
| Description: Negation type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| wnot | ⊢ ¬ :(∗ → ∗) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wim 137 | . . . 4 ⊢ ⇒ :(∗ → (∗ → ∗)) | |
| 2 | wv 64 | . . . 4 ⊢ p:∗:∗ | |
| 3 | wfal 135 | . . . 4 ⊢ ⊥:∗ | |
| 4 | 1, 2, 3 | wov 72 | . . 3 ⊢ [p:∗ ⇒ ⊥]:∗ |
| 5 | 4 | wl 66 | . 2 ⊢ λp:∗ [p:∗ ⇒ ⊥]:(∗ → ∗) |
| 6 | df-not 130 | . 2 ⊢ ⊤⊧[¬ = λp:∗ [p:∗ ⇒ ⊥]] | |
| 7 | 5, 6 | eqtypri 81 | 1 ⊢ ¬ :(∗ → ∗) |
| Colors of variables: type var term |
| Syntax hints: tv 1 → ht 2 ∗hb 3 λkl 6 ⊤kt 8 [kbr 9 wffMMJ2t 12 ⊥tfal 118 ¬ tne 120 ⇒ tim 121 |
| This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
| This theorem depends on definitions: df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
| This theorem is referenced by: notval 145 notval2 159 notnot1 160 con3d 162 alnex 186 exnal1 187 exmid 199 notnot 200 exnal 201 ax3 205 ax6 208 ax9 212 ax12 215 |
| Copyright terms: Public domain | W3C validator |