Detailed syntax breakdown of Definition df-im
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | tim 121 |
. . 3
term ⇒ |
| 3 | | hb 3 |
. . . 4
type ∗ |
| 4 | | vp |
. . . 4
var p |
| 5 | | vq |
. . . . 5
var q |
| 6 | 3, 4 | tv 1 |
. . . . . . 7
term p:∗ |
| 7 | 3, 5 | tv 1 |
. . . . . . 7
term q:∗ |
| 8 | | tan 119 |
. . . . . . 7
term ∧ |
| 9 | 6, 7, 8 | kbr 9 |
. . . . . 6
term [p:∗ ∧
q:∗] |
| 10 | | ke 7 |
. . . . . 6
term = |
| 11 | 9, 6, 10 | kbr 9 |
. . . . 5
term [[p:∗ ∧
q:∗] = p:∗] |
| 12 | 3, 5, 11 | kl 6 |
. . . 4
term λq:∗ [[p:∗ ∧
q:∗] = p:∗] |
| 13 | 3, 4, 12 | kl 6 |
. . 3
term λp:∗ λq:∗ [[p:∗ ∧
q:∗] = p:∗] |
| 14 | 2, 13, 10 | kbr 9 |
. 2
term [ ⇒ = λp:∗ λq:∗ [[p:∗ ∧
q:∗] = p:∗]] |
| 15 | 1, 14 | wffMMJ2 11 |
1
wff ⊤⊧[ ⇒ =
λp:∗
λq:∗ [[p:∗ ∧
q:∗] = p:∗]] |