![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > notval | GIF version |
Description: Value of negation. |
Ref | Expression |
---|---|
imval.1 | ⊢ A:∗ |
Ref | Expression |
---|---|
notval | ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wnot 128 | . . 3 ⊢ ¬ :(∗ → ∗) | |
2 | imval.1 | . . 3 ⊢ A:∗ | |
3 | 1, 2 | wc 45 | . 2 ⊢ (¬ A):∗ |
4 | df-not 120 | . . 3 ⊢ ⊤⊧[¬ = λp:∗ [p:∗ ⇒ ⊥]] | |
5 | 1, 2, 4 | ceq1 79 | . 2 ⊢ ⊤⊧[(¬ A) = (λp:∗ [p:∗ ⇒ ⊥]A)] |
6 | wim 127 | . . . 4 ⊢ ⇒ :(∗ → (∗ → ∗)) | |
7 | wv 58 | . . . 4 ⊢ p:∗:∗ | |
8 | wfal 125 | . . . 4 ⊢ ⊥:∗ | |
9 | 6, 7, 8 | wov 64 | . . 3 ⊢ [p:∗ ⇒ ⊥]:∗ |
10 | 7, 2 | weqi 68 | . . . . 5 ⊢ [p:∗ = A]:∗ |
11 | 10 | id 25 | . . . 4 ⊢ [p:∗ = A]⊧[p:∗ = A] |
12 | 6, 7, 8, 11 | oveq1 89 | . . 3 ⊢ [p:∗ = A]⊧[[p:∗ ⇒ ⊥] = [A ⇒ ⊥]] |
13 | 9, 2, 12 | cl 106 | . 2 ⊢ ⊤⊧[(λp:∗ [p:∗ ⇒ ⊥]A) = [A ⇒ ⊥]] |
14 | 3, 5, 13 | eqtri 85 | 1 ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
Colors of variables: type var term |
Syntax hints: tv 1 ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 108 ¬ tne 110 ⇒ tim 111 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
This theorem is referenced by: notval2 149 notnot1 150 con2d 151 alnex 174 exmid 186 notnot 187 ax3 192 |
Copyright terms: Public domain | W3C validator |