Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > notval | GIF version |
Description: Value of negation. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
imval.1 | ⊢ A:∗ |
Ref | Expression |
---|---|
notval | ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wnot 138 | . . 3 ⊢ ¬ :(∗ → ∗) | |
2 | imval.1 | . . 3 ⊢ A:∗ | |
3 | 1, 2 | wc 50 | . 2 ⊢ (¬ A):∗ |
4 | df-not 130 | . . 3 ⊢ ⊤⊧[¬ = λp:∗ [p:∗ ⇒ ⊥]] | |
5 | 1, 2, 4 | ceq1 89 | . 2 ⊢ ⊤⊧[(¬ A) = (λp:∗ [p:∗ ⇒ ⊥]A)] |
6 | wim 137 | . . . 4 ⊢ ⇒ :(∗ → (∗ → ∗)) | |
7 | wv 64 | . . . 4 ⊢ p:∗:∗ | |
8 | wfal 135 | . . . 4 ⊢ ⊥:∗ | |
9 | 6, 7, 8 | wov 72 | . . 3 ⊢ [p:∗ ⇒ ⊥]:∗ |
10 | 7, 2 | weqi 76 | . . . . 5 ⊢ [p:∗ = A]:∗ |
11 | 10 | id 25 | . . . 4 ⊢ [p:∗ = A]⊧[p:∗ = A] |
12 | 6, 7, 8, 11 | oveq1 99 | . . 3 ⊢ [p:∗ = A]⊧[[p:∗ ⇒ ⊥] = [A ⇒ ⊥]] |
13 | 9, 2, 12 | cl 116 | . 2 ⊢ ⊤⊧[(λp:∗ [p:∗ ⇒ ⊥]A) = [A ⇒ ⊥]] |
14 | 3, 5, 13 | eqtri 95 | 1 ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
Colors of variables: type var term |
Syntax hints: tv 1 ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 118 ¬ tne 120 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: notval2 159 notnot1 160 con2d 161 alnex 186 exmid 199 notnot 200 ax3 205 |
Copyright terms: Public domain | W3C validator |