Detailed syntax breakdown of Definition df-or
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | tor 124 |
. . 3
term
∨ |
| 3 | | hb 3 |
. . . 4
type ∗ |
| 4 | | vp |
. . . 4
var p |
| 5 | | vq |
. . . . 5
var q |
| 6 | | tal 122 |
. . . . . 6
term ∀ |
| 7 | | vx |
. . . . . . 7
var x |
| 8 | 3, 4 | tv 1 |
. . . . . . . . 9
term p:∗ |
| 9 | 3, 7 | tv 1 |
. . . . . . . . 9
term x:∗ |
| 10 | | tim 121 |
. . . . . . . . 9
term ⇒ |
| 11 | 8, 9, 10 | kbr 9 |
. . . . . . . 8
term [p:∗ ⇒ x:∗] |
| 12 | 3, 5 | tv 1 |
. . . . . . . . . 10
term q:∗ |
| 13 | 12, 9, 10 | kbr 9 |
. . . . . . . . 9
term [q:∗ ⇒ x:∗] |
| 14 | 13, 9, 10 | kbr 9 |
. . . . . . . 8
term [[q:∗ ⇒ x:∗] ⇒ x:∗] |
| 15 | 11, 14, 10 | kbr 9 |
. . . . . . 7
term [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]] |
| 16 | 3, 7, 15 | kl 6 |
. . . . . 6
term λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]] |
| 17 | 6, 16 | kc 5 |
. . . . 5
term (∀λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]]) |
| 18 | 3, 5, 17 | kl 6 |
. . . 4
term λq:∗ (∀λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]]) |
| 19 | 3, 4, 18 | kl 6 |
. . 3
term λp:∗ λq:∗ (∀λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]]) |
| 20 | | ke 7 |
. . 3
term = |
| 21 | 2, 19, 20 | kbr 9 |
. 2
term [ ∨ =
λp:∗
λq:∗ (∀λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]])] |
| 22 | 1, 21 | wffMMJ2 11 |
1
wff ⊤⊧[
∨ = λp:∗
λq:∗ (∀λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]])] |