Detailed syntax breakdown of Definition df-eu
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | teu 125 |
. . 3
term ∃! |
| 3 | | hal |
. . . . 5
type α |
| 4 | | hb 3 |
. . . . 5
type ∗ |
| 5 | 3, 4 | ht 2 |
. . . 4
type (α → ∗) |
| 6 | | vp |
. . . 4
var p |
| 7 | | tex 123 |
. . . . 5
term ∃ |
| 8 | | vy |
. . . . . 6
var y |
| 9 | | tal 122 |
. . . . . . 7
term ∀ |
| 10 | | vx |
. . . . . . . 8
var x |
| 11 | 5, 6 | tv 1 |
. . . . . . . . . 10
term p:(α
→ ∗) |
| 12 | 3, 10 | tv 1 |
. . . . . . . . . 10
term x:α |
| 13 | 11, 12 | kc 5 |
. . . . . . . . 9
term (p:(α
→ ∗)x:α) |
| 14 | 3, 8 | tv 1 |
. . . . . . . . . 10
term y:α |
| 15 | | ke 7 |
. . . . . . . . . 10
term = |
| 16 | 12, 14, 15 | kbr 9 |
. . . . . . . . 9
term [x:α =
y:α] |
| 17 | 13, 16, 15 | kbr 9 |
. . . . . . . 8
term [(p:(α
→ ∗)x:α) = [x:α =
y:α]] |
| 18 | 3, 10, 17 | kl 6 |
. . . . . . 7
term λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]] |
| 19 | 9, 18 | kc 5 |
. . . . . 6
term (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]) |
| 20 | 3, 8, 19 | kl 6 |
. . . . 5
term λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]) |
| 21 | 7, 20 | kc 5 |
. . . 4
term (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]])) |
| 22 | 5, 6, 21 | kl 6 |
. . 3
term λp:(α
→ ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]])) |
| 23 | 2, 22, 15 | kbr 9 |
. 2
term [∃!
= λp:(α → ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]))] |
| 24 | 1, 23 | wffMMJ2 11 |
1
wff ⊤⊧[∃! = λp:(α
→ ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]))] |