Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > hbl1 | GIF version |
Description: Inference form of ax-hbl1 103. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
ax-hbl1.1 | ⊢ A:γ |
ax-hbl1.2 | ⊢ B:α |
hbl1.3 | ⊢ R:∗ |
Ref | Expression |
---|---|
hbl1 | ⊢ R⊧[(λx:α λx:β AB) = λx:β A] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbl1.3 | . 2 ⊢ R:∗ | |
2 | ax-hbl1.1 | . . 3 ⊢ A:γ | |
3 | ax-hbl1.2 | . . 3 ⊢ B:α | |
4 | 2, 3 | ax-hbl1 103 | . 2 ⊢ ⊤⊧[(λx:α λx:β AB) = λx:β A] |
5 | 1, 4 | a1i 28 | 1 ⊢ R⊧[(λx:α λx:β AB) = λx:β A] |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-trud 26 ax-hbl1 103 |
This theorem is referenced by: clf 115 cbvf 179 axrep 220 |
Copyright terms: Public domain | W3C validator |