| Step | Hyp | Ref
| Expression |
| 1 | | wal 134 |
. . . . . . 7
⊢ ∀:((α
→ ∗) → ∗) |
| 2 | | wex 139 |
. . . . . . . . 9
⊢ ∃:((β
→ ∗) → ∗) |
| 3 | | wal 134 |
. . . . . . . . . . 11
⊢ ∀:((β
→ ∗) → ∗) |
| 4 | | wim 137 |
. . . . . . . . . . . . 13
⊢ ⇒ :(∗
→ (∗ → ∗)) |
| 5 | | axrep.1 |
. . . . . . . . . . . . . . 15
⊢ A:∗ |
| 6 | 5 | wl 66 |
. . . . . . . . . . . . . 14
⊢
λy:β A:(β →
∗) |
| 7 | 3, 6 | wc 50 |
. . . . . . . . . . . . 13
⊢ (∀λy:β
A):∗ |
| 8 | | wv 64 |
. . . . . . . . . . . . . 14
⊢ z:β:β |
| 9 | | wv 64 |
. . . . . . . . . . . . . 14
⊢ y:β:β |
| 10 | 8, 9 | weqi 76 |
. . . . . . . . . . . . 13
⊢ [z:β =
y:β]:∗ |
| 11 | 4, 7, 10 | wov 72 |
. . . . . . . . . . . 12
⊢ [(∀λy:β
A) ⇒ [z:β =
y:β]]:∗ |
| 12 | 11 | wl 66 |
. . . . . . . . . . 11
⊢
λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]:(β → ∗) |
| 13 | 3, 12 | wc 50 |
. . . . . . . . . 10
⊢ (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]):∗ |
| 14 | 13 | wl 66 |
. . . . . . . . 9
⊢
λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]):(β → ∗) |
| 15 | 2, 14 | wc 50 |
. . . . . . . 8
⊢ (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]])):∗ |
| 16 | 15 | wl 66 |
. . . . . . 7
⊢
λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]])):(α → ∗) |
| 17 | 1, 16 | wc 50 |
. . . . . 6
⊢ (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]))):∗ |
| 18 | | wtru 43 |
. . . . . . . 8
⊢
⊤:∗ |
| 19 | | wex 139 |
. . . . . . . . 9
⊢ ∃:((α
→ ∗) → ∗) |
| 20 | | wan 136 |
. . . . . . . . . . 11
⊢ ∧ :(∗ → (∗ →
∗)) |
| 21 | | axrep.2 |
. . . . . . . . . . . 12
⊢ B:(α
→ ∗) |
| 22 | | wv 64 |
. . . . . . . . . . . 12
⊢ x:α:α |
| 23 | 21, 22 | wc 50 |
. . . . . . . . . . 11
⊢ (Bx:α):∗ |
| 24 | 20, 23, 7 | wov 72 |
. . . . . . . . . 10
⊢ [(Bx:α) ∧
(∀λy:β
A)]:∗ |
| 25 | 24 | wl 66 |
. . . . . . . . 9
⊢
λx:α [(Bx:α) ∧
(∀λy:β
A)]:(α → ∗) |
| 26 | 19, 25 | wc 50 |
. . . . . . . 8
⊢ (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]):∗ |
| 27 | 18, 26 | eqid 83 |
. . . . . . 7
⊢
⊤⊧[(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 28 | 27 | alrimiv 151 |
. . . . . 6
⊢
⊤⊧(∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]) |
| 29 | 17, 28 | a1i 28 |
. . . . 5
⊢ (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]])))⊧(∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]) |
| 30 | 29 | ax-cb1 29 |
. . . . . 6
⊢ (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]))):∗ |
| 31 | | wv 64 |
. . . . . . . . . . 11
⊢ y:(β →
∗):(β →
∗) |
| 32 | 31, 8 | wc 50 |
. . . . . . . . . 10
⊢ (y:(β →
∗)z:β):∗ |
| 33 | 32, 26 | weqi 76 |
. . . . . . . . 9
⊢ [(y:(β →
∗)z:β) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]:∗ |
| 34 | 33 | wl 66 |
. . . . . . . 8
⊢
λz:β [(y:(β →
∗)z:β) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]:(β → ∗) |
| 35 | 3, 34 | wc 50 |
. . . . . . 7
⊢ (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]):∗ |
| 36 | 26 | wl 66 |
. . . . . . 7
⊢
λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]):(β → ∗) |
| 37 | | weq 41 |
. . . . . . . . . 10
⊢ = :(∗
→ (∗ → ∗)) |
| 38 | 31, 36 | weqi 76 |
. . . . . . . . . . . . 13
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]:∗ |
| 39 | 38 | id 25 |
. . . . . . . . . . . 12
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 40 | 31, 8, 39 | ceq1 89 |
. . . . . . . . . . 11
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[(y:(β →
∗)z:β) = (λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])z:β)] |
| 41 | 26 | beta 92 |
. . . . . . . . . . . 12
⊢
⊤⊧[(λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 42 | 38, 41 | a1i 28 |
. . . . . . . . . . 11
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[(λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 43 | 32, 40, 42 | eqtri 95 |
. . . . . . . . . 10
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[(y:(β →
∗)z:β) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 44 | 37, 32, 26, 43 | oveq1 99 |
. . . . . . . . 9
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[[(y:(β →
∗)z:β) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] = [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]] |
| 45 | | weq 41 |
. . . . . . . . . 10
⊢ = :((β → ∗) → ((β → ∗) →
∗)) |
| 46 | | wv 64 |
. . . . . . . . . 10
⊢ f:β:β |
| 47 | 37, 46 | ax-17 105 |
. . . . . . . . . 10
⊢
⊤⊧[(λz:β =
f:β) = = ] |
| 48 | 31, 46 | ax-17 105 |
. . . . . . . . . 10
⊢
⊤⊧[(λz:β
y:(β → ∗)f:β) =
y:(β → ∗)] |
| 49 | 26, 46 | ax-hbl1 103 |
. . . . . . . . . 10
⊢
⊤⊧[(λz:β
λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])f:β) =
λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 50 | 45, 31, 46, 36, 47, 48, 49 | hbov 111 |
. . . . . . . . 9
⊢
⊤⊧[(λz:β
[y:(β → ∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]f:β) =
[y:(β → ∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]] |
| 51 | 33, 44, 50 | leqf 181 |
. . . . . . . 8
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] = λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]] |
| 52 | 3, 34, 51 | ceq2 90 |
. . . . . . 7
⊢ [y:(β →
∗) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]⊧[(∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]) = (∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])] |
| 53 | 26, 26 | weqi 76 |
. . . . . . . . 9
⊢ [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]:∗ |
| 54 | 53 | wl 66 |
. . . . . . . 8
⊢
λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]:(β → ∗) |
| 55 | | wv 64 |
. . . . . . . 8
⊢ f:(β →
∗):(β →
∗) |
| 56 | 3, 55 | ax-17 105 |
. . . . . . . 8
⊢
⊤⊧[(λy:(β →
∗) ∀f:(β →
∗)) = ∀] |
| 57 | | weq 41 |
. . . . . . . . . . 11
⊢ = :(γ → (γ → ∗)) |
| 58 | 57, 55 | ax-17 105 |
. . . . . . . . . 10
⊢
⊤⊧[(λy:(β →
∗) = f:(β → ∗)) = = ] |
| 59 | 2, 55 | ax-17 105 |
. . . . . . . . . . 11
⊢
⊤⊧[(λy:(β →
∗) ∃f:(β →
∗)) = ∃] |
| 60 | 20, 55 | ax-17 105 |
. . . . . . . . . . . . 13
⊢
⊤⊧[(λy:(β →
∗) ∧ f:(β →
∗)) = ∧ ] |
| 61 | 23, 55 | ax-17 105 |
. . . . . . . . . . . . 13
⊢
⊤⊧[(λy:(β →
∗) (Bx:α)f:(β →
∗)) = (Bx:α)] |
| 62 | 5, 55, 18 | hbl1 104 |
. . . . . . . . . . . . . 14
⊢
⊤⊧[(λy:(β →
∗) λy:β Af:(β → ∗)) =
λy:β A] |
| 63 | 3, 6, 55, 56, 62 | hbc 110 |
. . . . . . . . . . . . 13
⊢
⊤⊧[(λy:(β →
∗) (∀λy:β
A)f:(β →
∗)) = (∀λy:β
A)] |
| 64 | 20, 23, 55, 7, 60, 61, 63 | hbov 111 |
. . . . . . . . . . . 12
⊢
⊤⊧[(λy:(β →
∗) [(Bx:α) ∧ (∀λy:β
A)]f:(β →
∗)) = [(Bx:α) ∧ (∀λy:β
A)]] |
| 65 | 24, 55, 64 | hbl 112 |
. . . . . . . . . . 11
⊢
⊤⊧[(λy:(β →
∗) λx:α [(Bx:α) ∧
(∀λy:β
A)]f:(β →
∗)) = λx:α [(Bx:α) ∧
(∀λy:β
A)]] |
| 66 | 19, 25, 55, 59, 65 | hbc 110 |
. . . . . . . . . 10
⊢
⊤⊧[(λy:(β →
∗) (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])f:(β →
∗)) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 67 | 37, 26, 55, 26, 58, 66, 66 | hbov 111 |
. . . . . . . . 9
⊢
⊤⊧[(λy:(β →
∗) [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]f:(β →
∗)) = [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]] |
| 68 | 53, 55, 67 | hbl 112 |
. . . . . . . 8
⊢
⊤⊧[(λy:(β →
∗) λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]f:(β →
∗)) = λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]] |
| 69 | 3, 54, 55, 56, 68 | hbc 110 |
. . . . . . 7
⊢
⊤⊧[(λy:(β →
∗) (∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])f:(β →
∗)) = (∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])] |
| 70 | 26, 55, 66 | hbl 112 |
. . . . . . 7
⊢
⊤⊧[(λy:(β →
∗) λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])f:(β →
∗)) = λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])] |
| 71 | 35, 36, 52, 69, 70 | clf 115 |
. . . . . 6
⊢
⊤⊧[(λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])) = (∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])] |
| 72 | 30, 71 | a1i 28 |
. . . . 5
⊢ (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]])))⊧[(λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])) = (∀λz:β [(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]) = (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])] |
| 73 | 29, 72 | mpbir 87 |
. . . 4
⊢ (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]])))⊧(λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])) |
| 74 | 35 | wl 66 |
. . . . 5
⊢
λy:(β → ∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]):((β → ∗) →
∗) |
| 75 | 74, 36 | ax4e 168 |
. . . 4
⊢
(λy:(β → ∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])λz:β (∃λx:α
[(Bx:α) ∧ (∀λy:β
A)]))⊧(∃λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])) |
| 76 | 73, 75 | syl 16 |
. . 3
⊢ (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]])))⊧(∃λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])) |
| 77 | 76, 18 | adantl 56 |
. 2
⊢ (⊤, (∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]))))⊧(∃λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])])) |
| 78 | 77 | ex 158 |
1
⊢
⊤⊧[(∀λx:α (∃λy:β (∀λz:β [(∀λy:β
A) ⇒ [z:β =
y:β]]))) ⇒ (∃λy:(β →
∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α) ∧ (∀λy:β
A)])]))] |