Proof of Theorem clf
Step | Hyp | Ref
| Expression |
1 | | clf.2 |
. 2
⊢ C:α |
2 | | clf.1 |
. . . . 5
⊢ A:β |
3 | 2 | wl 66 |
. . . 4
⊢
λx:α A:(α
→ β) |
4 | 3, 1 | wc 50 |
. . 3
⊢
(λx:α AC):β |
5 | | clf.3 |
. . . 4
⊢ [x:α =
C]⊧[A = B] |
6 | 2, 5 | eqtypi 78 |
. . 3
⊢ B:β |
7 | 4, 6 | weqi 76 |
. 2
⊢
[(λx:α AC) = B]:∗ |
8 | | clf.4 |
. . . 4
⊢
⊤⊧[(λx:α
By:α) =
B] |
9 | 8 | ax-cb1 29 |
. . 3
⊢
⊤:∗ |
10 | 2 | beta 92 |
. . 3
⊢
⊤⊧[(λx:α
Ax:α) =
A] |
11 | 9, 10 | a1i 28 |
. 2
⊢
⊤⊧[(λx:α
Ax:α) =
A] |
12 | | weq 41 |
. . 3
⊢ = :(β → (β → ∗)) |
13 | | wv 64 |
. . 3
⊢ y:α:α |
14 | 12, 13, 9 | a17i 106 |
. . 3
⊢
⊤⊧[(λx:α =
y:α) = = ] |
15 | 2, 13, 9 | hbl1 104 |
. . . 4
⊢
⊤⊧[(λx:α
λx:α Ay:α) = λx:α
A] |
16 | | clf.5 |
. . . 4
⊢
⊤⊧[(λx:α
Cy:α) =
C] |
17 | 3, 1, 13, 15, 16 | hbc 110 |
. . 3
⊢
⊤⊧[(λx:α
(λx:α AC)y:α) =
(λx:α AC)] |
18 | 12, 4, 13, 6, 14, 17, 8 | hbov 111 |
. 2
⊢
⊤⊧[(λx:α
[(λx:α AC) = B]y:α) = [(λx:α
AC) =
B]] |
19 | | wv 64 |
. . . 4
⊢ x:α:α |
20 | 3, 19 | wc 50 |
. . 3
⊢
(λx:α Ax:α):β |
21 | 19, 1 | weqi 76 |
. . . . 5
⊢ [x:α =
C]:∗ |
22 | 21 | id 25 |
. . . 4
⊢ [x:α =
C]⊧[x:α =
C] |
23 | 3, 19, 22 | ceq2 90 |
. . 3
⊢ [x:α =
C]⊧[(λx:α
Ax:α) =
(λx:α AC)] |
24 | 12, 20, 2, 23, 5 | oveq12 100 |
. 2
⊢ [x:α =
C]⊧[[(λx:α
Ax:α) =
A] = [(λx:α
AC) =
B]] |
25 | 1, 7, 11, 18, 24 | insti 114 |
1
⊢
⊤⊧[(λx:α
AC) =
B] |