| Step | Hyp | Ref
| Expression |
| 1 | | cbvf.1 |
. . . . 5
⊢ A:β |
| 2 | 1 | wl 66 |
. . . 4
⊢
λx:α A:(α
→ β) |
| 3 | | wv 64 |
. . . 4
⊢ p:α:α |
| 4 | 2, 3 | wc 50 |
. . 3
⊢
(λx:α Ap:α):β |
| 5 | 4 | wl 66 |
. 2
⊢
λp:α (λx:α
Ap:α):(α → β) |
| 6 | | cbvf.4 |
. . . . . . . 8
⊢ [x:α =
y:α]⊧[A = B] |
| 7 | 1, 6 | eqtypi 78 |
. . . . . . 7
⊢ B:β |
| 8 | 7 | wl 66 |
. . . . . 6
⊢
λy:α B:(α
→ β) |
| 9 | 8, 3 | wc 50 |
. . . . 5
⊢
(λy:α Bp:α):β |
| 10 | 4, 9 | weqi 76 |
. . . 4
⊢
[(λx:α Ap:α) = (λy:α
Bp:α)]:∗ |
| 11 | | wv 64 |
. . . . 5
⊢ y:α:α |
| 12 | | cbvf.3 |
. . . . 5
⊢
⊤⊧[(λx:α
Bz:α) =
B] |
| 13 | | wv 64 |
. . . . . 6
⊢ z:α:α |
| 14 | 11, 13 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:α
y:αz:α) =
y:α] |
| 15 | 1, 11, 6, 12, 14 | clf 115 |
. . . 4
⊢
⊤⊧[(λx:α
Ay:α) =
B] |
| 16 | | weq 41 |
. . . . 5
⊢ = :(β → (β → ∗)) |
| 17 | 16, 13 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λy:α =
z:α) = = ] |
| 18 | | cbvf.2 |
. . . . . . 7
⊢
⊤⊧[(λy:α
Az:α) =
A] |
| 19 | 1, 13, 18 | hbl 112 |
. . . . . 6
⊢
⊤⊧[(λy:α
λx:α Az:α) = λx:α
A] |
| 20 | 3, 13 | ax-17 105 |
. . . . . 6
⊢
⊤⊧[(λy:α
p:αz:α) =
p:α] |
| 21 | 2, 3, 13, 19, 20 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λy:α
(λx:α Ap:α)z:α) =
(λx:α Ap:α)] |
| 22 | 18 | ax-cb1 29 |
. . . . . . 7
⊢
⊤:∗ |
| 23 | 7, 13, 22 | hbl1 104 |
. . . . . 6
⊢
⊤⊧[(λy:α
λy:α Bz:α) = λy:α
B] |
| 24 | 8, 3, 13, 23, 20 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λy:α
(λy:α Bp:α)z:α) =
(λy:α Bp:α)] |
| 25 | 16, 4, 13, 9, 17, 21, 24 | hbov 111 |
. . . 4
⊢
⊤⊧[(λy:α
[(λx:α Ap:α) = (λy:α
Bp:α)]z:α) =
[(λx:α Ap:α) = (λy:α
Bp:α)]] |
| 26 | 2, 11 | wc 50 |
. . . . 5
⊢
(λx:α Ay:α):β |
| 27 | 11, 3 | weqi 76 |
. . . . . . 7
⊢ [y:α =
p:α]:∗ |
| 28 | 27 | id 25 |
. . . . . 6
⊢ [y:α =
p:α]⊧[y:α =
p:α] |
| 29 | 2, 11, 28 | ceq2 90 |
. . . . 5
⊢ [y:α =
p:α]⊧[(λx:α
Ay:α) =
(λx:α Ap:α)] |
| 30 | 29 | ax-cb1 29 |
. . . . . . 7
⊢ [y:α =
p:α]:∗ |
| 31 | 8, 11 | wc 50 |
. . . . . . . 8
⊢
(λy:α By:α):β |
| 32 | 7 | beta 92 |
. . . . . . . 8
⊢
⊤⊧[(λy:α
By:α) =
B] |
| 33 | 31, 32 | eqcomi 79 |
. . . . . . 7
⊢
⊤⊧[B =
(λy:α By:α)] |
| 34 | 30, 33 | a1i 28 |
. . . . . 6
⊢ [y:α =
p:α]⊧[B = (λy:α
By:α)] |
| 35 | 8, 11, 28 | ceq2 90 |
. . . . . 6
⊢ [y:α =
p:α]⊧[(λy:α
By:α) =
(λy:α Bp:α)] |
| 36 | 7, 34, 35 | eqtri 95 |
. . . . 5
⊢ [y:α =
p:α]⊧[B = (λy:α
Bp:α)] |
| 37 | 16, 26, 7, 29, 36 | oveq12 100 |
. . . 4
⊢ [y:α =
p:α]⊧[[(λx:α
Ay:α) =
B] = [(λx:α
Ap:α) =
(λy:α Bp:α)]] |
| 38 | 3, 10, 15, 25, 37 | insti 114 |
. . 3
⊢
⊤⊧[(λx:α
Ap:α) =
(λy:α Bp:α)] |
| 39 | 4, 38 | leq 91 |
. 2
⊢
⊤⊧[λp:α
(λx:α Ap:α) = λp:α
(λy:α Bp:α)] |
| 40 | 2 | eta 178 |
. 2
⊢
⊤⊧[λp:α
(λx:α Ap:α) = λx:α
A] |
| 41 | 8 | eta 178 |
. 2
⊢
⊤⊧[λp:α
(λy:α Bp:α) = λy:α
B] |
| 42 | 5, 39, 40, 41 | 3eqtr3i 97 |
1
⊢
⊤⊧[λx:α
A = λy:α
B] |